Induction of the rat hepatic microsomal mixed-function oxidases by two aza-arenes. A comparison with their non-heterocyclic analogues. 1988

A D Ayrton, and J Trinick, and B P Wood, and J N Smith, and C Ioannides
Department of Biochemistry, University of Surrey, Guildford, U.K.

The ability of the aza-aromatic polycyclic aromatic hydrocarbons 10-azobenz(a)pyrene and benz(a)acridine to induce the rat hepatic microsomal mixed-function oxidases was compared to that of their non-heterocyclic analogues benz(a)pyrene and benz(a)anthracene respectively. All four hydrocarbons markedly increased the O-deethylations of ethoxyresorufin and ethoxycoumarin, the non-heterocyclic analogues being the more potent. A more modest increase was seen in the O-dealkylation of pentoxyresorufin. All four hydrocarbons induced proteins recognised by antibodies to cytochrome P-450IAI but no increase was seen when antibodies to cytochrome P-450IIB1 were employed. The metabolic activation of benz(a)pyrene and Glu-P-1 to mutagenic intermediates in the Ames test was enhanced by all pretreatments. It is concluded that the aza-aromatic polycyclic hydrocarbons, like their non-heterocyclic analogues, selectively induce the cytochrome P-450I family of proteins.

UI MeSH Term Description Entries
D007093 Imidazoles Compounds containing 1,3-diazole, a five membered aromatic ring containing two nitrogen atoms separated by one of the carbons. Chemically reduced ones include IMIDAZOLINES and IMIDAZOLIDINES. Distinguish from 1,2-diazole (PYRAZOLES).
D007163 Immunosorbent Techniques Techniques for removal by adsorption and subsequent elution of a specific antibody or antigen using an immunosorbent containing the homologous antigen or antibody. Immunoadsorbent Techniques,Immunoadsorbent Technics,Immunosorbent Technics,Immunoadsorbent Technic,Immunoadsorbent Technique,Immunosorbent Technic,Immunosorbent Technique,Technic, Immunoadsorbent,Technic, Immunosorbent,Technics, Immunoadsorbent,Technics, Immunosorbent,Technique, Immunoadsorbent,Technique, Immunosorbent,Techniques, Immunoadsorbent,Techniques, Immunosorbent
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D009152 Mutagenicity Tests Tests of chemical substances and physical agents for mutagenic potential. They include microbial, insect, mammalian cell, and whole animal tests. Genetic Toxicity Tests,Genotoxicity Tests,Mutagen Screening,Tests, Genetic Toxicity,Toxicity Tests, Genetic,Genetic Toxicity Test,Genotoxicity Test,Mutagen Screenings,Mutagenicity Test,Screening, Mutagen,Screenings, Mutagen,Test, Genotoxicity,Tests, Genotoxicity,Toxicity Test, Genetic
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D006899 Mixed Function Oxygenases Widely distributed enzymes that carry out oxidation-reduction reactions in which one atom of the oxygen molecule is incorporated into the organic substrate; the other oxygen atom is reduced and combined with hydrogen ions to form water. They are also known as monooxygenases or hydroxylases. These reactions require two substrates as reductants for each of the two oxygen atoms. There are different classes of monooxygenases depending on the type of hydrogen-providing cosubstrate (COENZYMES) required in the mixed-function oxidation. Hydroxylase,Hydroxylases,Mixed Function Oxidase,Mixed Function Oxygenase,Monooxygenase,Monooxygenases,Mixed Function Oxidases,Function Oxidase, Mixed,Function Oxygenase, Mixed,Oxidase, Mixed Function,Oxidases, Mixed Function,Oxygenase, Mixed Function,Oxygenases, Mixed Function
D000166 Acridines Compounds that include the structure of acridine. Acridine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001551 Benz(a)Anthracenes Four fused benzyl rings with three linear and one angular, that can be viewed as a benzyl-phenanthrenes. Compare with NAPHTHACENES which are four linear rings. Benz(b)Phenanthrenes,Naphthanthracenes

Related Publications

A D Ayrton, and J Trinick, and B P Wood, and J N Smith, and C Ioannides
October 1989, Toxicology letters,
A D Ayrton, and J Trinick, and B P Wood, and J N Smith, and C Ioannides
March 1974, Proceedings of the National Academy of Sciences of the United States of America,
A D Ayrton, and J Trinick, and B P Wood, and J N Smith, and C Ioannides
September 1970, Life sciences. Pt. 1: Physiology and pharmacology,
A D Ayrton, and J Trinick, and B P Wood, and J N Smith, and C Ioannides
January 1979, Journal of agricultural and food chemistry,
A D Ayrton, and J Trinick, and B P Wood, and J N Smith, and C Ioannides
January 1976, Biochemical pharmacology,
A D Ayrton, and J Trinick, and B P Wood, and J N Smith, and C Ioannides
March 1977, Life sciences,
A D Ayrton, and J Trinick, and B P Wood, and J N Smith, and C Ioannides
December 1972, Environmental research,
A D Ayrton, and J Trinick, and B P Wood, and J N Smith, and C Ioannides
November 1980, Experientia,
A D Ayrton, and J Trinick, and B P Wood, and J N Smith, and C Ioannides
August 1986, Mutation research,
A D Ayrton, and J Trinick, and B P Wood, and J N Smith, and C Ioannides
January 1978, Experimental gerontology,
Copied contents to your clipboard!