Influence of activation mode, fatigue, and ceramic interposition on resin cements' diametral tensile strength. 2019

Paula Nunes Guimarães Paes, and Mauro Sayão de Miranda, and Hélio Rodrigues Sampaio-Filho, and Lourenço Correr-Sobrinho
Universidade do Estado do Rio de Janeiro - UERJ, Faculty of Dentistry, Department of Dentistry, Rio de Janeiro, RJ, Brazil.

This study evaluated the influence of activation modes, on Diametral Tensile Strength (DTS) of dual cured resin cements subjected to a Mechanical Fatigue test (MF). Four dual-cured resin cements (RelyX UNICEM [U], RelyX ARC [A], ENFORCE [E] and Nexus 2 [N]) were activated by three different curing modes as follows: Self-Curing (SC), Dual Cure activation with photoactivation executed directly (DC) and Dual Cure activation with Photoactivation Through Porcelain (DCTP). After 24 hours, half of the sample was subjected to 30.000 fatigue cycles at 1 Hz frequency and 12 N load. Then, all specimens were subjected to DTS test in Instron Universal Testing Machine and data were analyzed by three-way ANOVA and Tukey's Test (5%). The results of DTS test means (MPa) and standard deviation, for each cement factor activated by SC, DC and DCTP was respectively: U (28.12 ± 5.29; 37.44 ± 6.49 and 40.10 ± 4.39), A (49.68 ± 8.42; 55.12 ± 5.16 and 63.43 ± 6.92), E (49.12 ± 3.89; 56.42 ± 8.88 and 56.96 ± 6.45) and N (61.89 ± 11.21; 59.26 ± 9.47 and 62.56 ± 10.93). Turkey's test indicated that DC is related to the highest DTS values; Nexus 2 DTS remained the same independently of activation mode and that the Porcelain disk interposition enhanced DTS only for RelyX ARC the ANOVA statistical test indicated that MF didn't alter the DTS values for all experimental groups. MF results clinical implication is that all cements tested exhibited, in an immediate loading, good cross linked bonds quality.

UI MeSH Term Description Entries
D008422 Materials Testing The testing of materials and devices, especially those used for PROSTHESES AND IMPLANTS; SUTURES; TISSUE ADHESIVES; etc., for hardness, strength, durability, safety, efficacy, and biocompatibility. Biocompatibility Testing,Biocompatible Materials Testing,Hemocompatibility Testing,Testing, Biocompatible Materials,Testing, Hemocompatible Materials,Hemocompatibility Testings,Hemocompatible Materials Testing,Materials Testing, Biocompatible,Materials Testing, Hemocompatible,Testing, Biocompatibility,Testing, Hemocompatibility,Testing, Materials,Testings, Biocompatibility
D011092 Polyethylene Glycols Polymers of ETHYLENE OXIDE and water, and their ethers. They vary in consistency from liquid to solid depending on the molecular weight indicated by a number following the name. They are used as SURFACTANTS, dispersing agents, solvents, ointment and suppository bases, vehicles, and tablet excipients. Some specific groups are NONOXYNOLS, OCTOXYNOLS, and POLOXAMERS. Macrogols,Polyoxyethylenes,Carbowax,Macrogol,Polyethylene Glycol,Polyethylene Oxide,Polyethyleneoxide,Polyglycol,Glycol, Polyethylene,Glycols, Polyethylene,Oxide, Polyethylene,Oxides, Polyethylene,Polyethylene Oxides,Polyethyleneoxides,Polyglycols,Polyoxyethylene
D011109 Polymethacrylic Acids Poly-2-methylpropenoic acids. Used in the manufacture of methacrylate resins and plastics in the form of pellets and granules, as absorbent for biological materials and as filters; also as biological membranes and as hydrogens. Synonyms: methylacrylate polymer; poly(methylacrylate); acrylic acid methyl ester polymer. Methacrylic Acid Polymers,Acid Polymers, Methacrylic,Acids, Polymethacrylic,Polymers, Methacrylic Acid
D012016 Reference Values The range or frequency distribution of a measurement in a population (of organisms, organs or things) that has not been selected for the presence of disease or abnormality. Normal Range,Normal Values,Reference Ranges,Normal Ranges,Normal Value,Range, Normal,Range, Reference,Ranges, Normal,Ranges, Reference,Reference Range,Reference Value,Value, Normal,Value, Reference,Values, Normal,Values, Reference
D002516 Ceramics Products made by baking or firing nonmetallic minerals (clay and similar materials). In making dental restorations or parts of restorations the material is fused porcelain. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed & Boucher's Clinical Dental Terminology, 4th ed) Ceramic
D000704 Analysis of Variance A statistical technique that isolates and assesses the contributions of categorical independent variables to variation in the mean of a continuous dependent variable. ANOVA,Analysis, Variance,Variance Analysis,Analyses, Variance,Variance Analyses
D013718 Tensile Strength The maximum stress a material subjected to a stretching load can withstand without tearing. (McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed, p2001) Strength, Tensile,Strengths, Tensile,Tensile Strengths
D015203 Reproducibility of Results The statistical reproducibility of measurements (often in a clinical context), including the testing of instrumentation or techniques to obtain reproducible results. The concept includes reproducibility of physiological measurements, which may be used to develop rules to assess probability or prognosis, or response to a stimulus; reproducibility of occurrence of a condition; and reproducibility of experimental results. Reliability and Validity,Reliability of Result,Reproducibility Of Result,Reproducibility of Finding,Validity of Result,Validity of Results,Face Validity,Reliability (Epidemiology),Reliability of Results,Reproducibility of Findings,Test-Retest Reliability,Validity (Epidemiology),Finding Reproducibilities,Finding Reproducibility,Of Result, Reproducibility,Of Results, Reproducibility,Reliabilities, Test-Retest,Reliability, Test-Retest,Result Reliabilities,Result Reliability,Result Validities,Result Validity,Result, Reproducibility Of,Results, Reproducibility Of,Test Retest Reliability,Validity and Reliability,Validity, Face
D017438 Bisphenol A-Glycidyl Methacrylate The reaction product of bisphenol A and glycidyl methacrylate that undergoes polymerization when exposed to ultraviolet light or mixed with a catalyst. It is used as a bond implant material and as the resin component of dental sealants and composite restorative materials. Bis-GMA,Bis-GMA Polymer,2-Propenoic acid, 2-methyl-, (1-methylethylidene)bis(4,1-phenyleneoxy(2-hydroxy-3,1-propanediyl)) ester, homopolymer,Adaptic,Bis(Phenol A-Glycidyl Methacrylate),Bis(Phenol A-Glycidyl Methacrylate), Homopolymer,Bis(Phenol A-Glycydyl Methacrylate),Bis-GMA Resin,Bisphenol A-Glycidyl Methacrylate Homopolymer,Bisphenol A-Glycidyl Methacrylate Polymer,Concise Composite Resin,Concise Enamel Bond,Concise Enamel Bond System,Concise Resin,Concise White Sealant,Conclude Composite Resin,Conclude Resin,Delton,Epoxylite-9075,Kerr Pit and Fissure Sealant,Kerr Sealer,Nuva-Seal,Panavia Opaque,Poly(Bis-GMA),Retroplast,Silux,Bis GMA,Bis GMA Polymer,Bis GMA Resin,Bis-GMA Polymers,Bis-GMA Resins,Bisphenol A Glycidyl Methacrylate,Bisphenol A Glycidyl Methacrylate Homopolymer,Bisphenol A Glycidyl Methacrylate Polymer,Bond, Concise Enamel,Composite Resin, Concise,Composite Resin, Conclude,Composite Resins, Concise,Concise Composite Resins,Concise Resins,Enamel Bond, Concise,Epoxylite 9075,Epoxylite9075,Methacrylate, Bisphenol A-Glycidyl,Nuva Seal,NuvaSeal,Opaque, Panavia,Polymer, Bis-GMA,Polymers, Bis-GMA,Resin, Bis-GMA,Resin, Concise,Resin, Concise Composite,Resin, Conclude,Resin, Conclude Composite,Resins, Bis-GMA,Resins, Concise,Resins, Concise Composite
D055115 Light-Curing of Dental Adhesives The hardening or polymerization of bonding agents (DENTAL CEMENTS) via exposure to light. Dental Bonding, Light-Cured,Light-Curing of Dental Cements,Light-Curing of Dental Resins,Dental Adhesives Light-Curing,Dental Bonding, Light Cured,Dental Bondings, Light-Cured,Dental Cements Light-Curing,Dental Resins Light-Curings,Light Curing of Dental Adhesives,Light Curing of Dental Cements,Light Curing of Dental Resins,Light-Cured Dental Bonding,Light-Cured Dental Bondings

Related Publications

Paula Nunes Guimarães Paes, and Mauro Sayão de Miranda, and Hélio Rodrigues Sampaio-Filho, and Lourenço Correr-Sobrinho
January 2005, Brazilian oral research,
Paula Nunes Guimarães Paes, and Mauro Sayão de Miranda, and Hélio Rodrigues Sampaio-Filho, and Lourenço Correr-Sobrinho
October 2007, Quintessence international (Berlin, Germany : 1985),
Paula Nunes Guimarães Paes, and Mauro Sayão de Miranda, and Hélio Rodrigues Sampaio-Filho, and Lourenço Correr-Sobrinho
January 2016, Dental materials journal,
Paula Nunes Guimarães Paes, and Mauro Sayão de Miranda, and Hélio Rodrigues Sampaio-Filho, and Lourenço Correr-Sobrinho
August 2019, Materials (Basel, Switzerland),
Paula Nunes Guimarães Paes, and Mauro Sayão de Miranda, and Hélio Rodrigues Sampaio-Filho, and Lourenço Correr-Sobrinho
December 2004, Journal of applied oral science : revista FOB,
Paula Nunes Guimarães Paes, and Mauro Sayão de Miranda, and Hélio Rodrigues Sampaio-Filho, and Lourenço Correr-Sobrinho
January 2011, International journal of computerized dentistry,
Paula Nunes Guimarães Paes, and Mauro Sayão de Miranda, and Hélio Rodrigues Sampaio-Filho, and Lourenço Correr-Sobrinho
January 2001, Brazilian dental journal,
Paula Nunes Guimarães Paes, and Mauro Sayão de Miranda, and Hélio Rodrigues Sampaio-Filho, and Lourenço Correr-Sobrinho
June 1992, Scandinavian journal of dental research,
Paula Nunes Guimarães Paes, and Mauro Sayão de Miranda, and Hélio Rodrigues Sampaio-Filho, and Lourenço Correr-Sobrinho
December 2010, Journal of applied oral science : revista FOB,
Paula Nunes Guimarães Paes, and Mauro Sayão de Miranda, and Hélio Rodrigues Sampaio-Filho, and Lourenço Correr-Sobrinho
April 2007, American journal of dentistry,
Copied contents to your clipboard!