Primary and tertiary structures of the first domain of Panulirus interruptus hemocyanin and comparison of arthropod hemocyanins. 1987

N M Soeter, and P A Jekel, and J J Beintema, and A Volbeda, and W G Hol
Biomolecular Study Centre (BIOS), Groningen, The Netherlands.

The amino acid sequence of the first domain (positions 1-175) of Panulirus interruptus hemocyanin subunit a has been determined. The sequence of residues 1-158 (18-kDa fragment obtained by limited proteolysis) was derived from peptides obtained by digestion of this fragment with CNBr and trypsin and by subdigestion of these peptides with other enzymes. The peptides were sequences automatically or manually. The amino acid sequence has been fitted into the electron-density map at 0.32-nm resolution. The residues of domain 1 are folded into a large, mainly helical, globular part, containing one disulfide bridge, and a smaller part near the molecular twofold axis. The latter part consists of an alpha helix and a beta strand which contains a covalently attached carbohydrate moiety. The sites susceptible to limited proteolytic cleavage of the subunit are discussed. Comparison of the N-terminal sequence with those of other arthropod hemocyanins revealed, besides an N-terminal extension of five residues, the presence of a 21-residue loop (positions 22-42) in the crustacean sequences. This loop contains helix 1.2, a less defined region in the electron-density map. It is absent in chelicerate sequences. Strong evidence is presented that: (a) the structure of the first 21 residues (including helix 1.1) is the same in all arthropod hemocyanins with known amino acid sequence; (b) a stretch containing about 15 residues (including part of helix 1.3) following the 21-residue loop has a different structure in crustaceans and chelicerates; (c) the rest of domain 1 has the same structure again. It is shown that all conserved residues are in the contact region with the other two domains.

UI MeSH Term Description Entries
D008121 Nephropidae Family of large marine CRUSTACEA, in the order DECAPODA. These are called clawed lobsters because they bear pincers on the first three pairs of legs. The American lobster and Cape lobster in the genus Homarus are commonly used for food. Clawed Lobsters,Homaridae,Homarus,Lobsters, Clawed,Clawed Lobster,Lobster, Clawed
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D010447 Peptide Hydrolases Hydrolases that specifically cleave the peptide bonds found in PROTEINS and PEPTIDES. Examples of sub-subclasses for this group include EXOPEPTIDASES and ENDOPEPTIDASES. Peptidase,Peptidases,Peptide Hydrolase,Protease,Proteases,Proteinase,Proteinases,Proteolytic Enzyme,Proteolytic Enzymes,Esteroproteases,Enzyme, Proteolytic,Hydrolase, Peptide
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D003488 Cyanogen Bromide Cyanogen bromide (CNBr). A compound used in molecular biology to digest some proteins and as a coupling reagent for phosphoroamidate or pyrophosphate internucleotide bonds in DNA duplexes. Bromide, Cyanogen
D006433 Hemocyanins Metalloproteins that function as oxygen transport proteins in the HEMOLYMPH of MOLLUSKS and ARTHROPODS. They are characterized by two copper atoms, coordinated with HISTIDINE residues, that reversibly bind a single oxygen molecule; they do not contain HEME groups. Hemocyanin,alpha-Haemocyanin,alpha-Hemocyanin,alpha-Hemocyanins,alpha Haemocyanin,alpha Hemocyanin,alpha Hemocyanins
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

N M Soeter, and P A Jekel, and J J Beintema, and A Volbeda, and W G Hol
May 1992, European journal of biochemistry,
N M Soeter, and P A Jekel, and J J Beintema, and A Volbeda, and W G Hol
December 1980, Biochimica et biophysica acta,
N M Soeter, and P A Jekel, and J J Beintema, and A Volbeda, and W G Hol
December 1979, Biochemistry,
N M Soeter, and P A Jekel, and J J Beintema, and A Volbeda, and W G Hol
September 1986, European journal of biochemistry,
N M Soeter, and P A Jekel, and J J Beintema, and A Volbeda, and W G Hol
July 1982, Journal of molecular biology,
N M Soeter, and P A Jekel, and J J Beintema, and A Volbeda, and W G Hol
May 1989, European journal of biochemistry,
N M Soeter, and P A Jekel, and J J Beintema, and A Volbeda, and W G Hol
April 1995, Biological chemistry Hoppe-Seyler,
N M Soeter, and P A Jekel, and J J Beintema, and A Volbeda, and W G Hol
May 1997, FEBS letters,
N M Soeter, and P A Jekel, and J J Beintema, and A Volbeda, and W G Hol
May 1994, European journal of biochemistry,
N M Soeter, and P A Jekel, and J J Beintema, and A Volbeda, and W G Hol
November 1977, Journal of molecular biology,
Copied contents to your clipboard!