Control of acetylcholine receptors in skeletal muscle. 1979

D M Fambrough

An ACh receptor is the molecular entity that, in its native habitat, possesses the binding sites for ACh and all the other components required to generate the ion channels mediating the ACh response. Narrower definitions of an ACh receptor (as the binding site for ACh or the polypeptide chain that is folded to form the binding site) could lead to semantic arguments about receptor structure. Experimentally, ACh receptors are defined by their total function (when electrophysiological tests are used) or by ligand binding. There is no evidence that the ligand-binding portions of ACh receptors ever exist in vivo without the associated channel-forming mechanism and vice versa. Most data are consistent with the idea that detergent-solubilized glycoproteins retaining the ACh binding sites of the receptor also include the channel-forming components, although it appears that the mechanism is prone to denaturation or proteolytic damage. Studies of receptor-rich membranes and of solubilized receptor glycoprotein have not yet yielded a totally satisfactory image of receptor structure. Most evidence favors an ACh receptor composed of three or four different types of glycosylated polypeptide chains organized into a unit of aggregate molecular weight about 300,000--400,000 daltons. Plasma membranes are dynamic structures in two different ways. First, their constituent molecules are in rapid thermal motion and, when these molecules are not tethered to extramembranous structures or mired in large aggregates, they fairly rapidly change their position in the plane of the lipid bilayer. Second, all membrane components are continually being synthesized and degraded. Acetylcholine receptors participate in both aspects of this dynamism. In this review it is proposed that the number and the distribution of ACh receptors in skeletal muscle are controlled by modulation of receptor metabolism and modulation of associations between receptor molecules or between receptors and other, as yet unidentified, elements in neuromuscular junctions and at extrajunctional sites where receptors are clustered. The arrangements of receptors in skeletal muscle and the total number of receptors in skeletal muscle may be regulated by separate mechanisms. Clusters of ACh receptors apparently can form spontaneously in extrajunctional areas of denervated muscles and in tissue-cultured embryonic muscle. Such clusters may be positionally stable and the receptor molecules in them may be highly restricted in mobility. Nevertheless, these receptors have average lifetimes on the order of 20 h, just like the nonclustered, mobile extrajunctional receptors. Receptor clusters also form at sites of innervation. In the chick embryo the junctional receptor molecules remain short-lived. The metabolism of ACh receptors is highly regulated. The biosynthesis of receptors commences during myogenesis at about the time myogenic cells become competent to fuse. Later, biosynthesis is dramatically repressed by muscle activity and possibly by other factors...

UI MeSH Term Description Entries
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009469 Neuromuscular Junction The synapse between a neuron and a muscle. Myoneural Junction,Nerve-Muscle Preparation,Junction, Myoneural,Junction, Neuromuscular,Junctions, Myoneural,Junctions, Neuromuscular,Myoneural Junctions,Nerve Muscle Preparation,Nerve-Muscle Preparations,Neuromuscular Junctions,Preparation, Nerve-Muscle,Preparations, Nerve-Muscle
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011950 Receptors, Cholinergic Cell surface proteins that bind acetylcholine with high affinity and trigger intracellular changes influencing the behavior of cells. Cholinergic receptors are divided into two major classes, muscarinic and nicotinic, based originally on their affinity for nicotine and muscarine. Each group is further subdivided based on pharmacology, location, mode of action, and/or molecular biology. ACh Receptor,Acetylcholine Receptor,Acetylcholine Receptors,Cholinergic Receptor,Cholinergic Receptors,Cholinoceptive Sites,Cholinoceptor,Cholinoceptors,Receptors, Acetylcholine,ACh Receptors,Receptors, ACh,Receptor, ACh,Receptor, Acetylcholine,Receptor, Cholinergic,Sites, Cholinoceptive
D002038 Bungarotoxins Neurotoxic proteins from the venom of the banded or Formosan krait (Bungarus multicinctus, an elapid snake). alpha-Bungarotoxin blocks nicotinic acetylcholine receptors and has been used to isolate and study them; beta- and gamma-bungarotoxins act presynaptically causing acetylcholine release and depletion. Both alpha and beta forms have been characterized, the alpha being similar to the large, long or Type II neurotoxins from other elapid venoms. alpha-Bungarotoxin,beta-Bungarotoxin,kappa-Bungarotoxin,alpha Bungarotoxin,beta Bungarotoxin,kappa Bungarotoxin
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D003714 Denervation The resection or removal of the nerve to an organ or part. Laser Neurectomy,Neurectomy,Peripheral Neurectomy,Radiofrequency Neurotomy,Denervations,Laser Neurectomies,Neurectomies,Neurectomies, Laser,Neurectomies, Peripheral,Neurectomy, Laser,Neurectomy, Peripheral,Neurotomies, Radiofrequency,Neurotomy, Radiofrequency,Peripheral Neurectomies,Radiofrequency Neurotomies
D004557 Electric Organ In about 250 species of electric fishes, modified muscle fibers forming disklike multinucleate plates arranged in stacks like batteries in series and embedded in a gelatinous matrix. A large torpedo ray may have half a million plates. Muscles in different parts of the body may be modified, i.e., the trunk and tail in the electric eel, the hyobranchial apparatus in the electric ray, and extrinsic eye muscles in the stargazers. Powerful electric organs emit pulses in brief bursts several times a second. They serve to stun prey and ward off predators. A large torpedo ray can produce of shock of more than 200 volts, capable of stunning a human. (Storer et al., General Zoology, 6th ed, p672) Electric Organs,Organ, Electric,Organs, Electric

Related Publications

D M Fambrough
June 1989, Journal of protein chemistry,
D M Fambrough
January 1993, Anesthesiology,
D M Fambrough
March 1992, The Journal of membrane biology,
D M Fambrough
October 1980, Science (New York, N.Y.),
D M Fambrough
January 1977, Progress in clinical and biological research,
D M Fambrough
September 2005, The Journal of pharmacology and experimental therapeutics,
Copied contents to your clipboard!