Fluorescent staining of acetylcholine receptors in vertebrate skeletal muscle. 1974

M J Anderson, and M W Cohen

1. alpha-Bungarotoxin was labelled with fluorescent dyes and used as a stain for visualizing the distribution of acetylcholine receptors in vertebrate skeletal muscle fibres.2. Dye-toxin conjugates had the same pharmacological properties as native toxin, but their potencies were lower.3. Fluorescent staining was examined in teased muscle fibres. The stain was found to be confined to the neuromuscular junction and associated with the subsynaptic membrane.4. Staining intensity was reduced by curare and even more so by carbachol, but not by atropine or neostigmine. Pre-treatment of muscles with unlabelled alpha-bungarotoxin entirely prevented staining.5. The staining at amphibian neuromuscular junctions was characterized by a pattern of intense transverse bands occurring at intervals of approximately 0.5-1 mum, with fluorescence of lower intensity between them. Fluorescent staining was not detected on adjacent, extrasynaptic, muscle membrane. In side views the staining appeared as a fine line with small protuberances occurring at the same intervals as the intense bands seen face-on. These results indicate that acetylcholine receptors are associated with the entire subsynaptic membrane, including the membrane of the junctional folds and that their density changes abruptly at the border between synaptic and extrasynaptic muscle membrane.

UI MeSH Term Description Entries
D008856 Microscopy, Fluorescence Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye. Fluorescence Microscopy,Immunofluorescence Microscopy,Microscopy, Immunofluorescence,Fluorescence Microscopies,Immunofluorescence Microscopies,Microscopies, Fluorescence,Microscopies, Immunofluorescence
D009210 Myofibrils The long cylindrical contractile organelles of STRIATED MUSCLE cells composed of ACTIN FILAMENTS; MYOSIN filaments; and other proteins organized in arrays of repeating units called SARCOMERES . Myofilaments,Myofibril,Myofilament
D009388 Neostigmine A cholinesterase inhibitor used in the treatment of myasthenia gravis and to reverse the effects of muscle relaxants such as gallamine and tubocurarine. Neostigmine, unlike PHYSOSTIGMINE, does not cross the blood-brain barrier. Synstigmin,Neostigmine Bromide,Neostigmine Methylsulfate,Polstigmine,Proserine,Prostigmin,Prostigmine,Prozerin,Syntostigmine,Bromide, Neostigmine,Methylsulfate, Neostigmine
D009469 Neuromuscular Junction The synapse between a neuron and a muscle. Myoneural Junction,Nerve-Muscle Preparation,Junction, Myoneural,Junction, Neuromuscular,Junctions, Myoneural,Junctions, Neuromuscular,Myoneural Junctions,Nerve Muscle Preparation,Nerve-Muscle Preparations,Neuromuscular Junctions,Preparation, Nerve-Muscle,Preparations, Nerve-Muscle
D011950 Receptors, Cholinergic Cell surface proteins that bind acetylcholine with high affinity and trigger intracellular changes influencing the behavior of cells. Cholinergic receptors are divided into two major classes, muscarinic and nicotinic, based originally on their affinity for nicotine and muscarine. Each group is further subdivided based on pharmacology, location, mode of action, and/or molecular biology. ACh Receptor,Acetylcholine Receptor,Acetylcholine Receptors,Cholinergic Receptor,Cholinergic Receptors,Cholinoceptive Sites,Cholinoceptor,Cholinoceptors,Receptors, Acetylcholine,ACh Receptors,Receptors, ACh,Receptor, ACh,Receptor, Acetylcholine,Receptor, Cholinergic,Sites, Cholinoceptive
D002038 Bungarotoxins Neurotoxic proteins from the venom of the banded or Formosan krait (Bungarus multicinctus, an elapid snake). alpha-Bungarotoxin blocks nicotinic acetylcholine receptors and has been used to isolate and study them; beta- and gamma-bungarotoxins act presynaptically causing acetylcholine release and depletion. Both alpha and beta forms have been characterized, the alpha being similar to the large, long or Type II neurotoxins from other elapid venoms. alpha-Bungarotoxin,beta-Bungarotoxin,kappa-Bungarotoxin,alpha Bungarotoxin,beta Bungarotoxin,kappa Bungarotoxin
D002217 Carbachol A slowly hydrolyzed CHOLINERGIC AGONIST that acts at both MUSCARINIC RECEPTORS and NICOTINIC RECEPTORS. Carbamylcholine,Carbacholine,Carbamann,Carbamoylcholine,Carbastat,Carbocholine,Carboptic,Doryl,Isopto Carbachol,Jestryl,Miostat,Carbachol, Isopto
D003472 Curare Plant extracts from several species, including genera STRYCHNOS and Chondodendron, which contain TETRAHYDROISOQUINOLINES that produce PARALYSIS of skeletal muscle. These extracts are toxic and must be used with the administration of artificial respiration.
D005456 Fluorescent Dyes Chemicals that emit light after excitation by light. The wave length of the emitted light is usually longer than that of the incident light. Fluorochromes are substances that cause fluorescence in other substances, i.e., dyes used to mark or label other compounds with fluorescent tags. Flourescent Agent,Fluorescent Dye,Fluorescent Probe,Fluorescent Probes,Fluorochrome,Fluorochromes,Fluorogenic Substrates,Fluorescence Agents,Fluorescent Agents,Fluorogenic Substrate,Agents, Fluorescence,Agents, Fluorescent,Dyes, Fluorescent,Probes, Fluorescent,Substrates, Fluorogenic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

M J Anderson, and M W Cohen
January 1989, Annual review of physiology,
M J Anderson, and M W Cohen
January 1993, Anesthesiology,
M J Anderson, and M W Cohen
January 1982, Annual review of physiology,
M J Anderson, and M W Cohen
May 1978, National Cancer Institute monograph,
M J Anderson, and M W Cohen
January 1979, Physiological reviews,
M J Anderson, and M W Cohen
June 1989, Journal of protein chemistry,
M J Anderson, and M W Cohen
January 1976, Cold Spring Harbor symposia on quantitative biology,
M J Anderson, and M W Cohen
March 1992, The Journal of membrane biology,
M J Anderson, and M W Cohen
January 1985, Muscle & nerve,
Copied contents to your clipboard!