Afferent projections from the mammary glands to the spinal cord in the lactating rat--I. A neuroanatomical study using the transganglionic transport of horseradish peroxidase-wheatgerm agglutinin. 1986

J G Tasker, and D T Theodosis, and D A Poulain

Horseradish peroxidase-wheatgerm agglutinin was injected subcutaneously into one or more nipples of lactating rats to determine the spinal organization of sensory afferents emanating from the mammary glands. After survival periods of 45-96 h, dorsal root ganglia and segments of the spinal cord and/or medulla oblongata were sectioned and reacted histochemically with tetramethylbenzidine to reveal the transganglionically transported tracer. For each nipple injected, the peroxidase reaction product was found in somata, ranging in diameter from 15 to 60 microns, and fibres in 5-11 contiguous dorsal root ganglia. The number of labelled profiles was highest in the 2-4 central-most ganglia of the series and generally decreased progressively rostrally and caudally. After separate injections into each of the six ipsilateral nipples, labelling occurred in all ipsilateral dorsal root ganglia between the 5th cervical and 6th lumbar spinal segments. Substantial overlap of the spinal projections from adjacent mammary glands was seen, a given dorsal root ganglion innervating 2-3 different glands. Label in the spinal cord was restricted to the medial portion of the superficial dorsal horn. It occurred in what appeared to be terminal fields and fibres essentially in the substantia gelatinosa, but was also seen to extend into the marginal zone and sometimes into deeper regions of the dorsal horn. Label was found in both the gracile and cuneate nuclei of the medulla oblongata, though only occasionally and then only very sparsely. The substantial spread and segmental overlap of labelled mammary afferents, and the fact that most labelled afferents terminated in the dorsal horn, suggest that this spinal region may be an important site for the integration of sensory input from the mammary glands that may play a role in the sensory induction of reflex milk ejection.

UI MeSH Term Description Entries
D007774 Lactation The processes of milk secretion by the maternal MAMMARY GLANDS after PARTURITION. The proliferation of the mammary glandular tissue, milk synthesis, and milk expulsion or let down are regulated by the interactions of several hormones including ESTRADIOL; PROGESTERONE; PROLACTIN; and OXYTOCIN. Lactation, Prolonged,Milk Secretion,Lactations, Prolonged,Milk Secretions,Prolonged Lactation,Prolonged Lactations
D008321 Mammary Glands, Animal MAMMARY GLANDS in the non-human MAMMALS. Mammae,Udder,Animal Mammary Glands,Animal Mammary Gland,Mammary Gland, Animal,Udders
D008526 Medulla Oblongata The lower portion of the BRAIN STEM. It is inferior to the PONS and anterior to the CEREBELLUM. Medulla oblongata serves as a relay station between the brain and the spinal cord, and contains centers for regulating respiratory, vasomotor, cardiac, and reflex activities. Accessory Cuneate Nucleus,Ambiguous Nucleus,Arcuate Nucleus of the Medulla,Arcuate Nucleus-1,External Cuneate Nucleus,Lateral Cuneate Nucleus,Nucleus Ambiguus,Ambiguus, Nucleus,Arcuate Nucleus 1,Arcuate Nucleus-1s,Cuneate Nucleus, Accessory,Cuneate Nucleus, External,Cuneate Nucleus, Lateral,Medulla Oblongatas,Nucleus, Accessory Cuneate,Nucleus, Ambiguous,Nucleus, External Cuneate,Nucleus, Lateral Cuneate
D008893 Milk Ejection Expulsion of milk from the mammary alveolar lumen, which is surrounded by a layer of milk-secreting EPITHELIAL CELLS and a network of myoepithelial cells. Contraction of the myoepithelial cells is regulated by neuroendocrine signals. Milk Let-down,Ejection, Milk,Milk Let down
D009475 Neurons, Afferent Neurons which conduct NERVE IMPULSES to the CENTRAL NERVOUS SYSTEM. Afferent Neurons,Afferent Neuron,Neuron, Afferent
D010525 Peripheral Nerves The nerves outside of the brain and spinal cord, including the autonomic, cranial, and spinal nerves. Peripheral nerves contain non-neuronal cells and connective tissue as well as axons. The connective tissue layers include, from the outside to the inside, the epineurium, the perineurium, and the endoneurium. Endoneurium,Epineurium,Perineurium,Endoneuriums,Epineuriums,Nerve, Peripheral,Nerves, Peripheral,Perineuriums,Peripheral Nerve
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D005260 Female Females
D005727 Ganglia, Spinal Sensory ganglia located on the dorsal spinal roots within the vertebral column. The spinal ganglion cells are pseudounipolar. The single primary branch bifurcates sending a peripheral process to carry sensory information from the periphery and a central branch which relays that information to the spinal cord or brain. Dorsal Root Ganglia,Spinal Ganglia,Dorsal Root Ganglion,Ganglion, Spinal,Ganglia, Dorsal Root,Ganglion, Dorsal Root,Spinal Ganglion

Related Publications

J G Tasker, and D T Theodosis, and D A Poulain
June 1989, [Osaka Daigaku shigaku zasshi] The journal of Osaka University Dental Society,
J G Tasker, and D T Theodosis, and D A Poulain
September 1984, The Journal of comparative neurology,
J G Tasker, and D T Theodosis, and D A Poulain
March 1984, The Journal of comparative neurology,
Copied contents to your clipboard!