Studies on the interaction with thymidylate synthase of analogues of 2'-deoxyuridine-5'-phosphate and 5-fluoro-2'-deoxyuridine-5'-phosphate with modified phosphate groups. 1987

W Rode, and T Kulikowski, and B Kedzierska, and D Shugar

The role of the phosphate moiety of dUMP, and some analogues, in their interaction with mammalian thymidylate synthase, has been investigated. Substrate and inhibitor activities, and the pH-dependence of these activities, of dUMP and 5-FdUMP, as well as analogues with modified phosphate groups, were compared. The methyl ester of dUMP was neither a substrate nor an inhibitor. By contrast, the methyl ester of 5-FdUMP was a slow-binding inhibitor of the enzyme from L1210, Ehrlich ascites carcinoma and CCRF-CEM cells, with Ki values in the micromolar range. Both 5-FdUrd and the newly synthesized 5'-methylphosphonate of 5-FdUrd were also slow-binding inhibitors of the Ehrlich carcinoma enzyme, but with Ki values in the millimolar range. The interaction of dUMP, 5-FdUMP, and the methyl ester of the latter decreased with increase in pH, whereas that of the 5'-methyl-phosphonate of 5-FdUrd remained unchanged. The results are discussed in relation to the role of the phosphate hydroxyls of dUMP in binding to the enzyme. 5-FdUMP and its analogues exhibited differing interactions with two binding sites on the enzyme molecule, consistent with cooperativity of binding. A convenient procedure is described for the synthesis of 5-fluoro-2'-deoxyuridine-5'-methylphosphonate, applicable also to the preparation of other 5'-methylphosphonate analogues.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D002286 Carcinoma, Ehrlich Tumor A transplantable, poorly differentiated malignant tumor which appeared originally as a spontaneous breast carcinoma in a mouse. It grows in both solid and ascitic forms. Ehrlich Ascites Tumor,Ascites Tumor, Ehrlich,Ehrlich Tumor Carcinoma,Tumor, Ehrlich Ascites
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D003856 Deoxyuracil Nucleotides Uracil nucleotides which contain deoxyribose as the sugar moiety. Deoxyuridine Phosphates,Nucleotides, Deoxyuracil,Phosphates, Deoxyuridine
D005468 Fluorodeoxyuridylate 5-Fluoro-2'-deoxyuridylate. An inhibitor of thymidylate synthetase. Formed from 5-fluorouracil or 5-fluorodeoxyuridine. 5-Fluoro-2'-Deoxyuridine-5'-Monophosphate,FdUMP,5 Fluoro 2' Deoxyuridine 5' Monophosphate
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D013940 Thymidylate Synthase An enzyme of the transferase class that catalyzes the reaction 5,10-methylenetetrahydrofolate and dUMP to dihydrofolate and dTMP in the synthesis of thymidine triphosphate. (From Dorland, 27th ed) EC 2.1.1.45. Thymidylate Synthetase,Synthase, Thymidylate,Synthetase, Thymidylate
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

W Rode, and T Kulikowski, and B Kedzierska, and D Shugar
February 1977, Archives of biochemistry and biophysics,
W Rode, and T Kulikowski, and B Kedzierska, and D Shugar
August 2002, Biochemical pharmacology,
W Rode, and T Kulikowski, and B Kedzierska, and D Shugar
March 1993, Biochemical pharmacology,
W Rode, and T Kulikowski, and B Kedzierska, and D Shugar
May 1993, Molecular pharmacology,
W Rode, and T Kulikowski, and B Kedzierska, and D Shugar
January 1974, Advances in experimental medicine and biology,
W Rode, and T Kulikowski, and B Kedzierska, and D Shugar
August 1979, Journal of medicinal chemistry,
W Rode, and T Kulikowski, and B Kedzierska, and D Shugar
September 1974, Journal of medicinal chemistry,
W Rode, and T Kulikowski, and B Kedzierska, and D Shugar
December 1987, Biochemistry,
W Rode, and T Kulikowski, and B Kedzierska, and D Shugar
February 1987, Journal of medicinal chemistry,
Copied contents to your clipboard!