Utilization of a colony assay to assess the variables influencing elimination of leukemic cells from human bone marrow with monoclonal antibodies and complement. 1985

T W LeBien, and D E Stepan, and R M Bartholomew, and R C Stong, and J M Anderson

We have previously used a chromium-release assay to demonstrate that the cocktail of monoclonal antibodies BA-1, BA-2, BA-3, and complement can effectively lyse human leukemic cells in the presence of excess bone marrow. Using a leukemic cell colony assay, we have reinvestigated the variables influencing lysis of human leukemic cells (KM-3, HPB-NULL, NALM-6) in bone marrow using BA-1, BA-2, BA-3, and complement. Specific variables addressed included the concentration of excess bone marrow cells, the number of treatments, the presence or absence of DNase during the treatment, the combination of antibodies, and the sensitivity of different leukemic cell lines to lysis. Using the colony assay, the BA-1,2,3 cocktail was shown to be more effective than any single antibody or combination of two antibodies. We also determined that the concentration of excess bone marrow cells and number of treatments had a direct bearing on leukemic cell lysis. Although two cycles of treatment were significantly superior to one cycle, three cycles were not significantly superior to two cycles. Inclusion of DNase (10 micrograms/mL) was a critical adjunct that eliminated clumping and facilitated plating cells in the colony assay. Finally, we could show that striking differences existed in the sensitivity of the leukemic cell lines to lysis with the BA-1,2,3 cocktail and complement. NALM-6 cells were the most sensitive (approximately four logs of kill), and KM-3 cells were the most resistant (less than two logs of kill). Our results strongly support the utility of sensitive leukemic cell colony assays in the analysis of marrow treatment variables in autologous bone marrow transplantation.

UI MeSH Term Description Entries
D007938 Leukemia A progressive, malignant disease of the blood-forming organs, characterized by distorted proliferation and development of leukocytes and their precursors in the blood and bone marrow. Leukemias were originally termed acute or chronic based on life expectancy but now are classified according to cellular maturity. Acute leukemias consist of predominately immature cells; chronic leukemias are composed of more mature cells. (From The Merck Manual, 2006) Leucocythaemia,Leucocythemia,Leucocythaemias,Leucocythemias,Leukemias
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D003114 Colony-Forming Units Assay A cytologic technique for measuring the functional capacity of stem cells by assaying their activity. Clonogenic Cell Assay,Stem Cell Assay,Clonogenic Cell Assays,Colony Forming Units Assays,Colony-Forming Units Assays,Stem Cell Assays,Assay, Clonogenic Cell,Assay, Colony-Forming Units,Assay, Stem Cell,Assays, Clonogenic Cell,Assays, Colony-Forming Units,Assays, Stem Cell,Colony Forming Units Assay
D003165 Complement System Proteins Serum glycoproteins participating in the host defense mechanism of COMPLEMENT ACTIVATION that creates the COMPLEMENT MEMBRANE ATTACK COMPLEX. Included are glycoproteins in the various pathways of complement activation (CLASSICAL COMPLEMENT PATHWAY; ALTERNATIVE COMPLEMENT PATHWAY; and LECTIN COMPLEMENT PATHWAY). Complement Proteins,Complement,Complement Protein,Hemolytic Complement,Complement, Hemolytic,Protein, Complement,Proteins, Complement,Proteins, Complement System
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000911 Antibodies, Monoclonal Antibodies produced by a single clone of cells. Monoclonal Antibodies,Monoclonal Antibody,Antibody, Monoclonal
D013234 Stem Cells Relatively undifferentiated cells that retain the ability to divide and proliferate throughout postnatal life to provide progenitor cells that can differentiate into specialized cells. Colony-Forming Units,Mother Cells,Progenitor Cells,Colony-Forming Unit,Cell, Mother,Cell, Progenitor,Cell, Stem,Cells, Mother,Cells, Progenitor,Cells, Stem,Colony Forming Unit,Colony Forming Units,Mother Cell,Progenitor Cell,Stem Cell
D014182 Transplantation, Autologous Transplantation of an individual's own tissue from one site to another site. Autografting,Autologous Transplantation,Autotransplantation,Autograftings,Autologous Transplantations,Autotransplantations,Transplantations, Autologous

Related Publications

T W LeBien, and D E Stepan, and R M Bartholomew, and R C Stong, and J M Anderson
March 1983, Cancer research,
T W LeBien, and D E Stepan, and R M Bartholomew, and R C Stong, and J M Anderson
February 1985, Cancer research,
T W LeBien, and D E Stepan, and R M Bartholomew, and R C Stong, and J M Anderson
January 1990, Progress in clinical and biological research,
T W LeBien, and D E Stepan, and R M Bartholomew, and R C Stong, and J M Anderson
February 1982, British journal of haematology,
T W LeBien, and D E Stepan, and R M Bartholomew, and R C Stong, and J M Anderson
September 1981, Cancer research,
T W LeBien, and D E Stepan, and R M Bartholomew, and R C Stong, and J M Anderson
August 1991, Chinese medical journal,
T W LeBien, and D E Stepan, and R M Bartholomew, and R C Stong, and J M Anderson
October 1987, Zhonghua yi xue za zhi = Chinese medical journal; Free China ed,
T W LeBien, and D E Stepan, and R M Bartholomew, and R C Stong, and J M Anderson
January 1990, Progress in clinical and biological research,
T W LeBien, and D E Stepan, and R M Bartholomew, and R C Stong, and J M Anderson
January 1993, Anticancer research,
Copied contents to your clipboard!