Ligand-induced changes in membrane-bound acetylcholine receptor observed by ethidium fluorescence. 2. Stopped-flow studies with agonists and antagonists. 1979

U Quast, and M I Schimerlik, and M A Raftery

The kinetics of cholinergic ligand binding to membrane-bound acetylcholine receptor from Torpedo californica have been followed in a stopped-flow photometer, by using the fluorescent probe ethidium. The overall reaction amplitude, as a function of ligand concentration, can be fit to the law of mass action for both agonist and antagonists. All agonists show at least biphasic kinetics, and the concentration dependence of the kinetic parameters is fit by a common mechanism involving sequential binding of ligands with increasingly lower affinity. The receptor-ligand precomplexes isomerize to different noninterconvertible final complexes depending on the number of ligands bound. In contrast, the kinetics observed with antagonists cannot be fit to a common model. These kinetics are always much slower than those observed with agonists, and the relaxation rates depend only weakly on antagonist concentration.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008024 Ligands A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed) Ligand
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D011950 Receptors, Cholinergic Cell surface proteins that bind acetylcholine with high affinity and trigger intracellular changes influencing the behavior of cells. Cholinergic receptors are divided into two major classes, muscarinic and nicotinic, based originally on their affinity for nicotine and muscarine. Each group is further subdivided based on pharmacology, location, mode of action, and/or molecular biology. ACh Receptor,Acetylcholine Receptor,Acetylcholine Receptors,Cholinergic Receptor,Cholinergic Receptors,Cholinoceptive Sites,Cholinoceptor,Cholinoceptors,Receptors, Acetylcholine,ACh Receptors,Receptors, ACh,Receptor, ACh,Receptor, Acetylcholine,Receptor, Cholinergic,Sites, Cholinoceptive
D002038 Bungarotoxins Neurotoxic proteins from the venom of the banded or Formosan krait (Bungarus multicinctus, an elapid snake). alpha-Bungarotoxin blocks nicotinic acetylcholine receptors and has been used to isolate and study them; beta- and gamma-bungarotoxins act presynaptically causing acetylcholine release and depletion. Both alpha and beta forms have been characterized, the alpha being similar to the large, long or Type II neurotoxins from other elapid venoms. alpha-Bungarotoxin,beta-Bungarotoxin,kappa-Bungarotoxin,alpha Bungarotoxin,beta Bungarotoxin,kappa Bungarotoxin
D002217 Carbachol A slowly hydrolyzed CHOLINERGIC AGONIST that acts at both MUSCARINIC RECEPTORS and NICOTINIC RECEPTORS. Carbamylcholine,Carbacholine,Carbamann,Carbamoylcholine,Carbastat,Carbocholine,Carboptic,Doryl,Isopto Carbachol,Jestryl,Miostat,Carbachol, Isopto
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D004557 Electric Organ In about 250 species of electric fishes, modified muscle fibers forming disklike multinucleate plates arranged in stacks like batteries in series and embedded in a gelatinous matrix. A large torpedo ray may have half a million plates. Muscles in different parts of the body may be modified, i.e., the trunk and tail in the electric eel, the hyobranchial apparatus in the electric ray, and extrinsic eye muscles in the stargazers. Powerful electric organs emit pulses in brief bursts several times a second. They serve to stun prey and ward off predators. A large torpedo ray can produce of shock of more than 200 volts, capable of stunning a human. (Storer et al., General Zoology, 6th ed, p672) Electric Organs,Organ, Electric,Organs, Electric
D004996 Ethidium A trypanocidal agent and possible antiviral agent that is widely used in experimental cell biology and biochemistry. Ethidium has several experimentally useful properties including binding to nucleic acids, noncompetitive inhibition of nicotinic acetylcholine receptors, and fluorescence among others. It is most commonly used as the bromide. Ethidium Bromide,Homidium Bromide,Novidium,Bromide, Ethidium,Bromide, Homidium
D005399 Fishes A group of cold-blooded, aquatic vertebrates having gills, fins, a cartilaginous or bony endoskeleton, and elongated bodies covered with scales.

Related Publications

U Quast, and M I Schimerlik, and M A Raftery
January 1986, Biochemistry,
U Quast, and M I Schimerlik, and M A Raftery
September 1976, Nature,
U Quast, and M I Schimerlik, and M A Raftery
January 1980, Neurochemistry international,
U Quast, and M I Schimerlik, and M A Raftery
September 1976, Biochemical and biophysical research communications,
U Quast, and M I Schimerlik, and M A Raftery
April 1984, FEBS letters,
U Quast, and M I Schimerlik, and M A Raftery
March 2015, Angewandte Chemie (International ed. in English),
Copied contents to your clipboard!