Sulfate reduction by a Desulfovibrio species isolated from sheep rumen. 1974

J Huisingh, and J J McNeill, and G Matrone

Several dissimilatory, sulfate-reducing bacteria were isolated from the rumen fluid of sheep fed purified diets containing sulfate. One isolate, strain D, was selected for characterization. This organism is a nonsporeforming, obligately anaerobic, mesophilic, nonmotile, gram-negative, straight rod. Cell-free extracts show absorption maxima for cytochrome c(3) and desulfoviridin, characteristic of Desulfovibrio. Carbohydrates, as a sole carbon source, will support growth. Lactate supports growth in the presence of sulfate, not in its absence, whereas glucose or pyruvate support growth either in the presence or absence of sulfate. The isolate has a deoxyribonucleic acid base composition of 61.2% guanine plus cytosine, which is similar to that of several other species of Desulfovibrio; however, it differs from previously described species in morphology, motility, and carbon source utilization. Cell-free extracts of this bacterium exhibit adenosine 5'-triphosphate-sulfurylase, adenosine-5'-phosphosulfate-reductase, and hydrogenase activity. After incubation of cell-free extracts with adenine 5'-triphosphate and (35)SO(4) (2-), adenosine-5'-phosphosulfate rather than 3'-phosphoadenosine-5'-phosphosulfate was shown to be labeled, indicating that the pathway of sulfate reduction in this organism is similar to that of other dissimilatory sulfate reducers. This is the first report of a Desulfovibrio sp. isolated from the rumen.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009711 Nucleotides The monomeric units from which DNA or RNA polymers are constructed. They consist of a purine or pyrimidine base, a pentose sugar, and a phosphate group. (From King & Stansfield, A Dictionary of Genetics, 4th ed) Nucleotide
D009713 Nucleotidyltransferases A class of enzymes that transfers nucleotidyl residues. EC 2.7.7. Nucleotidyltransferase
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010088 Oxidoreductases The class of all enzymes catalyzing oxidoreduction reactions. The substrate that is oxidized is regarded as a hydrogen donor. The systematic name is based on donor:acceptor oxidoreductase. The recommended name will be dehydrogenase, wherever this is possible; as an alternative, reductase can be used. Oxidase is only used in cases where O2 is the acceptor. (Enzyme Nomenclature, 1992, p9) Dehydrogenases,Oxidases,Oxidoreductase,Reductases,Dehydrogenase,Oxidase,Reductase
D002474 Cell-Free System A fractionated cell extract that maintains a biological function. A subcellular fraction isolated by ultracentrifugation or other separation techniques must first be isolated so that a process can be studied free from all of the complex side reactions that occur in a cell. The cell-free system is therefore widely used in cell biology. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p166) Cellfree System,Cell Free System,Cell-Free Systems,Cellfree Systems,System, Cell-Free,System, Cellfree,Systems, Cell-Free,Systems, Cellfree
D003901 Desulfovibrio A genus of gram-negative, anaerobic, rod-shaped bacteria capable of reducing sulfur compounds to hydrogen sulfide. Organisms are isolated from anaerobic mud of fresh and salt water, animal intestines, manure, and feces.
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004590 Electrophoresis, Paper Electrophoresis in which paper is used as the diffusion medium. This technique is confined almost entirely to separations of small molecules such as amino acids, peptides, and nucleotides, and relatively high voltages are nearly always used. Paper Electrophoresis
D000693 Anaerobiosis The complete absence, or (loosely) the paucity, of gaseous or dissolved elemental oxygen in a given place or environment. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Anaerobic Metabolism,Anaerobic Metabolisms,Anaerobioses,Metabolism, Anaerobic,Metabolisms, Anaerobic

Related Publications

J Huisingh, and J J McNeill, and G Matrone
June 1964, La Ricerca scientifica. 2. ser., pt. 2: Rendiconti. Sezione B: Biologica,
J Huisingh, and J J McNeill, and G Matrone
October 1976, Applied and environmental microbiology,
J Huisingh, and J J McNeill, and G Matrone
October 2001, Archives of microbiology,
J Huisingh, and J J McNeill, and G Matrone
February 1980, Biochemical and biophysical research communications,
J Huisingh, and J J McNeill, and G Matrone
January 2003, Acta veterinaria Hungarica,
J Huisingh, and J J McNeill, and G Matrone
February 1984, Applied and environmental microbiology,
J Huisingh, and J J McNeill, and G Matrone
January 2018, Frontiers in microbiology,
J Huisingh, and J J McNeill, and G Matrone
September 2017, International journal of systematic and evolutionary microbiology,
J Huisingh, and J J McNeill, and G Matrone
March 1978, Research in veterinary science,
J Huisingh, and J J McNeill, and G Matrone
July 1992, Journal of animal science,
Copied contents to your clipboard!