Tn7 and Tn501 Insertions into Pseudomonas aeruginosa plasmid R91-5: mapping of two transfer regions. 1982

R J Moore, and V Krishnapillai

We constructed a restriction endonuclease map of the Pseudomonas aeruginosa narrow-host-range plasmid R91-5. Insertions of transposons Tn7 and Tn501 into the plasmid DNA were characterized physically and genetically. The distribution of sites of insertion showed some regional specificity for the insertion of these transposons, especially TN501. The insertion of Tn7 was unusual in that all 42 of 43 insertions were in the same orientation. By relating phenotypic changes to the site of insertion, the Tn1 transposon that was already present on R91-5 and coded for carbenicillin resistance was mapped, and its orientation was determined. Two major transfer regions were identified. We believe that Tra1 is involved in conjugal DNA metabolism, whereas Tra2 is involved mainly in production of the sex pili.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010861 Fimbriae, Bacterial Thin, hairlike appendages, 1 to 20 microns in length and often occurring in large numbers, present on the cells of gram-negative bacteria, particularly Enterobacteriaceae and Neisseria. Unlike flagella, they do not possess motility, but being protein (pilin) in nature, they possess antigenic and hemagglutinating properties. They are of medical importance because some fimbriae mediate the attachment of bacteria to cells via adhesins (ADHESINS, BACTERIAL). Bacterial fimbriae refer to common pili, to be distinguished from the preferred use of "pili", which is confined to sex pili (PILI, SEX). Bacterial Fimbriae,Bacterial Pili,Common Fimbriae,Common Pili,Pili, Bacterial,Pili, Common,Bacterial Fimbria,Bacterial Pilus,Common Fimbria,Common Pilus,Fimbria, Bacterial,Pilus, Bacterial,Fimbria, Common,Fimbriae, Common,Pilus, Common
D011550 Pseudomonas aeruginosa A species of gram-negative, aerobic, rod-shaped bacteria commonly isolated from clinical specimens (wound, burn, and urinary tract infections). It is also found widely distributed in soil and water. P. aeruginosa is a major agent of nosocomial infection. Bacillus aeruginosus,Bacillus pyocyaneus,Bacterium aeruginosum,Bacterium pyocyaneum,Micrococcus pyocyaneus,Pseudomonas polycolor,Pseudomonas pyocyanea
D011815 R Factors A class of plasmids that transfer antibiotic resistance from one bacterium to another by conjugation. R Factor,R Plasmid,R Plasmids,Resistance Factor,Resistance Factors,Factor, R,Factor, Resistance,Factors, R,Factors, Resistance,Plasmid, R,Plasmids, R
D002228 Carbenicillin Broad-spectrum semisynthetic penicillin derivative used parenterally. It is susceptible to gastric juice and penicillinase and may damage platelet function. Carboxybenzyl Penicillin,Anabactyl,Carbapen,Carbecin,Carbenicillin Disodium,Geopen,Microcillin,Pyopen,Disodium, Carbenicillin,Penicillin, Carboxybenzyl
D003227 Conjugation, Genetic A parasexual process in BACTERIA; ALGAE; FUNGI; and ciliate EUKARYOTA for achieving exchange of chromosome material during fusion of two cells. In bacteria, this is a uni-directional transfer of genetic material; in protozoa it is a bi-directional exchange. In algae and fungi, it is a form of sexual reproduction, with the union of male and female gametes. Bacterial Conjugation,Conjugation, Bacterial,Genetic Conjugation
D004251 DNA Transposable Elements Discrete segments of DNA which can excise and reintegrate to another site in the genome. Most are inactive, i.e., have not been found to exist outside the integrated state. DNA transposable elements include bacterial IS (insertion sequence) elements, Tn elements, the maize controlling elements Ac and Ds, Drosophila P, gypsy, and pogo elements, the human Tigger elements and the Tc and mariner elements which are found throughout the animal kingdom. DNA Insertion Elements,DNA Transposons,IS Elements,Insertion Sequence Elements,Tn Elements,Transposable Elements,Elements, Insertion Sequence,Sequence Elements, Insertion,DNA Insertion Element,DNA Transposable Element,DNA Transposon,Element, DNA Insertion,Element, DNA Transposable,Element, IS,Element, Insertion Sequence,Element, Tn,Element, Transposable,Elements, DNA Insertion,Elements, DNA Transposable,Elements, IS,Elements, Tn,Elements, Transposable,IS Element,Insertion Element, DNA,Insertion Elements, DNA,Insertion Sequence Element,Sequence Element, Insertion,Tn Element,Transposable Element,Transposable Element, DNA,Transposable Elements, DNA,Transposon, DNA,Transposons, DNA
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D000327 Adsorption The adhesion of gases, liquids, or dissolved solids onto a surface. It includes adsorptive phenomena of bacteria and viruses onto surfaces as well. ABSORPTION into the substance may follow but not necessarily. Adsorptions
D001435 Bacteriophages Viruses whose hosts are bacterial cells. Phages,Bacteriophage,Phage

Related Publications

R J Moore, and V Krishnapillai
September 1978, Journal of bacteriology,
R J Moore, and V Krishnapillai
August 1977, Australian journal of biological sciences,
R J Moore, and V Krishnapillai
February 1983, Journal of bacteriology,
R J Moore, and V Krishnapillai
January 1984, Molecular & general genetics : MGG,
R J Moore, and V Krishnapillai
July 1979, Journal of bacteriology,
R J Moore, and V Krishnapillai
January 1981, Genetics,
R J Moore, and V Krishnapillai
January 1982, Molecular & general genetics : MGG,
R J Moore, and V Krishnapillai
December 1978, Journal of bacteriology,
Copied contents to your clipboard!