Ca2+, cAMP, and changes in myosin phosphorylation during contraction of smooth muscle. 1983

M O Aksoy, and S Mras, and K E Kamm, and R A Murphy

Phosphorylation of myosin increases rapidly upon stimulation of an arterial smooth muscle. However, peak values are not maintained and phosphorylation declines, while active stress increases monotonically to a sustained steady state. The aim of this study was to determine the reason(s) for the transient change in myosin phosphorylation. Four hypotheses were considered: 1) reduced substrate, i.e., ATP depletion, 2) altered access of either the myosin kinase or phosphatase to the cross bridge, 3) reduced myosin kinase activity secondary to its phosphorylation by adenosine 3',5'-cyclic monophosphate-dependent protein kinase, and 4) reduced myoplasmic [Ca2+] during the contraction. Our results suggest that the most likely explanation is that there are two Ca2+-dependent regulatory processes: 1) myosin phosphorylation and 2) a second, unidentified site allowing stress maintenance with reduced cross-bridge cycling rates. A higher cell Ca2+ concentration appears to be necessary to activate myosin kinase and produce myosin phosphorylation than is needed for force maintenance. We suggest that agonist-induced Ca2+ transients, coupled with the differential Ca2+ sensitivity of the two regulatory systems, may explain the observed transient in myosin phosphorylation during a maintained contraction in smooth muscle.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D009218 Myosins A diverse superfamily of proteins that function as translocating proteins. They share the common characteristics of being able to bind ACTINS and hydrolyze MgATP. Myosins generally consist of heavy chains which are involved in locomotion, and light chains which are involved in regulation. Within the structure of myosin heavy chain are three domains: the head, the neck and the tail. The head region of the heavy chain contains the actin binding domain and MgATPase domain which provides energy for locomotion. The neck region is involved in binding the light-chains. The tail region provides the anchoring point that maintains the position of the heavy chain. The superfamily of myosins is organized into structural classes based upon the type and arrangement of the subunits they contain. Myosin ATPase,ATPase, Actin-Activated,ATPase, Actomyosin,ATPase, Myosin,Actin-Activated ATPase,Actomyosin ATPase,Actomyosin Adenosinetriphosphatase,Adenosine Triphosphatase, Myosin,Adenosinetriphosphatase, Actomyosin,Adenosinetriphosphatase, Myosin,Myosin,Myosin Adenosinetriphosphatase,ATPase, Actin Activated,Actin Activated ATPase,Myosin Adenosine Triphosphatase
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002339 Carotid Arteries Either of the two principal arteries on both sides of the neck that supply blood to the head and neck; each divides into two branches, the internal carotid artery and the external carotid artery. Arteries, Carotid,Artery, Carotid,Carotid Artery
D003599 Cytoskeleton The network of filaments, tubules, and interconnecting filamentous bridges which give shape, structure, and organization to the cytoplasm. Cytoplasmic Filaments,Cytoskeletal Filaments,Microtrabecular Lattice,Cytoplasmic Filament,Cytoskeletal Filament,Cytoskeletons,Filament, Cytoplasmic,Filament, Cytoskeletal,Filaments, Cytoplasmic,Filaments, Cytoskeletal,Lattice, Microtrabecular,Lattices, Microtrabecular,Microtrabecular Lattices
D000242 Cyclic AMP An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH. Adenosine Cyclic 3',5'-Monophosphate,Adenosine Cyclic 3,5 Monophosphate,Adenosine Cyclic Monophosphate,Adenosine Cyclic-3',5'-Monophosphate,Cyclic AMP, (R)-Isomer,Cyclic AMP, Disodium Salt,Cyclic AMP, Monoammonium Salt,Cyclic AMP, Monopotassium Salt,Cyclic AMP, Monosodium Salt,Cyclic AMP, Sodium Salt,3',5'-Monophosphate, Adenosine Cyclic,AMP, Cyclic,Adenosine Cyclic 3',5' Monophosphate,Cyclic 3',5'-Monophosphate, Adenosine,Cyclic Monophosphate, Adenosine,Cyclic-3',5'-Monophosphate, Adenosine,Monophosphate, Adenosine Cyclic

Related Publications

M O Aksoy, and S Mras, and K E Kamm, and R A Murphy
December 1988, The American journal of physiology,
M O Aksoy, and S Mras, and K E Kamm, and R A Murphy
October 1980, The Journal of biological chemistry,
M O Aksoy, and S Mras, and K E Kamm, and R A Murphy
January 1999, Molecular and cellular biochemistry,
M O Aksoy, and S Mras, and K E Kamm, and R A Murphy
May 1991, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
M O Aksoy, and S Mras, and K E Kamm, and R A Murphy
July 1985, The American journal of physiology,
M O Aksoy, and S Mras, and K E Kamm, and R A Murphy
April 1982, Biochemical and biophysical research communications,
M O Aksoy, and S Mras, and K E Kamm, and R A Murphy
January 1991, The Journal of biological chemistry,
M O Aksoy, and S Mras, and K E Kamm, and R A Murphy
September 1983, The American journal of physiology,
M O Aksoy, and S Mras, and K E Kamm, and R A Murphy
August 1982, Nature,
M O Aksoy, and S Mras, and K E Kamm, and R A Murphy
July 1991, Pflugers Archiv : European journal of physiology,
Copied contents to your clipboard!