Closely spaced nucleosome cores in reconstituted histone.DNA complexes and histone-H1-depleted chromatin. 1978

M Steinmetz, and R E Streeck, and H G Zachau

It has been demonstrated by digestion studies with micrococcal nuclease that reconstitution of complexes from DNA and a mixture of the four small calf thymus histones H2A, H2B, H3, and H4 leads to subunits closely spaced in a 137 +/- 7-nucleotide-pair register. Subunits isolated from the reconstituted complex contain nearly equimolar amounts of the four histones and sediment at 11.6S. On DNase I digestion both the reconstituted complex and the separated subunits gave rise to series of single-stranded DNA fragments with a 10-nucleotide periodicity. This indicates that the reconstitution leads to subunits very similar to nucleosome cores. Nucleosome cores closely spaced in a 140-nucleotide-pair register were also obtained upon removal of histone H1 from chromatin by dissociation with 0.63 M NaCl and subsequent ultracentrifugation. In reconstitution experiments with all five histones (including histone H1) our procedure did not lead to tandemly arranged nucleosomes containing about 200 nucleotide pairs of DNA. In the presence of EDTA, DNase II cleaved calf thymus nuclei and chromatin at about 200-nucleotide-pair intervals whereas in the presence of Mg2+ cleavage at intervals of approximately half this size was observed. The change in the nature of the cleavage pattern, however, was no longer found after removal of histone H1 from chromatin. This indicates that H1 influences the accessibility of DNase II cleavage sites in chromatin. This finding is discussed with respect to the influence of histone H1 on chromatin superstructure.

UI MeSH Term Description Entries
D008836 Micrococcal Nuclease An enzyme that catalyzes the endonucleolytic cleavage to 3'-phosphomononucleotide and 3'-phospholigonucleotide end-products. It can cause hydrolysis of double- or single-stranded DNA or RNA. (From Enzyme Nomenclature, 1992) EC 3.1.31.1. Staphylococcal Nuclease,TNase,Thermonuclease,Thermostable Nuclease,Nuclease, Micrococcal,Nuclease, Staphylococcal,Nuclease, Thermostable
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D002843 Chromatin The material of CHROMOSOMES. It is a complex of DNA; HISTONES; and nonhistone proteins (CHROMOSOMAL PROTEINS, NON-HISTONE) found within the nucleus of a cell. Chromatins
D003851 Deoxyribonucleases Enzymes which catalyze the hydrolases of ester bonds within DNA. EC 3.1.-. DNAase,DNase,Deoxyribonuclease,Desoxyribonuclease,Desoxyribonucleases,Nucleases, DNA,Acid DNase,Alkaline DNase,DNA Nucleases,DNase, Acid,DNase, Alkaline
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D006657 Histones Small chromosomal proteins (approx 12-20 kD) possessing an open, unfolded structure and attached to the DNA in cell nuclei by ionic linkages. Classification into the various types (designated histone I, histone II, etc.) is based on the relative amounts of arginine and lysine in each. Histone,Histone H1,Histone H1(s),Histone H2a,Histone H2b,Histone H3,Histone H3.3,Histone H4,Histone H5,Histone H7
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

M Steinmetz, and R E Streeck, and H G Zachau
January 1980, Preparative biochemistry,
M Steinmetz, and R E Streeck, and H G Zachau
October 1986, Journal of biomolecular structure & dynamics,
M Steinmetz, and R E Streeck, and H G Zachau
January 1980, Doklady Akademii nauk SSSR,
M Steinmetz, and R E Streeck, and H G Zachau
February 1996, The Journal of biological chemistry,
M Steinmetz, and R E Streeck, and H G Zachau
August 1987, Biochimica et biophysica acta,
M Steinmetz, and R E Streeck, and H G Zachau
October 1991, Experimental cell research,
M Steinmetz, and R E Streeck, and H G Zachau
June 1984, Biochemical and biophysical research communications,
M Steinmetz, and R E Streeck, and H G Zachau
April 1981, European journal of biochemistry,
Copied contents to your clipboard!