Alterations in nucleosome core structure in linker histone-depleted chromatin. 1996

S I Usachenko, and I M Gavin, and S G Bavykin
W. A. Engelhardt Institute of Molecular Biology, Academy of Sciences of Russia, Vavilova, 32, 117984 Moscow B-334, Russia.

We have previously shown that the sequential arrangement of histone-DNA contacts is essentially the same in the nucleosomal core of sea urchin sperm nuclei, where chromatin is highly condensed and repressed, and in nuclei from lily bud sepals or yeast, where chromatin is highly active in transcription and replication and is significantly or completely depleted of histone H1. However, the difference in the strength of some histone-DNA contacts has not been understood or discussed. In this work, we demonstrate that some of these differences are due to a conformational change in the nucleosomal core. We show that the nucleosomal core in linker histone-depleted chromatin is in a different conformational state compared with the nucleosomal core in folded chromatin or in isolated core nucleosomes. This conformational state is characterized by altered strengths in the histone H4 and H2A/H2B contacts with the regions of sharply bent nucleosomal DNA around sites +/-1 and +/-4 and site +/-5, respectively. We demonstrate that this conformation, which we call the "stretched nucleosome," is a general feature of unfolded linker histone-depleted chromatin and may occur during chromatin activation. Our results suggest that this nucleosome structural alteration does not depend on chromatin sources and histone variants studied in this work. In addition, we show that this alteration is reversible and is caused by the stretching of linker DNA during chromatin unfolding.

UI MeSH Term Description Entries
D008297 Male Males
D008961 Models, Structural A representation, generally small in scale, to show the structure, construction, or appearance of something. (From Random House Unabridged Dictionary, 2d ed) Model, Structural,Structural Model,Structural Models
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D009707 Nucleosomes The repeating structural units of chromatin, each consisting of approximately 200 base pairs of DNA wound around a protein core. This core is composed of the histones H2A, H2B, H3, and H4. Dinucleosomes,Polynucleosomes,Dinucleosome,Nucleosome,Polynucleosome
D010944 Plants Multicellular, eukaryotic life forms of kingdom Plantae. Plants acquired chloroplasts by direct endosymbiosis of CYANOBACTERIA. They are characterized by a mainly photosynthetic mode of nutrition; essentially unlimited growth at localized regions of cell divisions (MERISTEMS); cellulose within cells providing rigidity; the absence of organs of locomotion; absence of nervous and sensory systems; and an alternation of haploid and diploid generations. It is a non-taxonomical term most often referring to LAND PLANTS. In broad sense it includes RHODOPHYTA and GLAUCOPHYTA along with VIRIDIPLANTAE. Plant
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D002645 Chickens Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA. Gallus gallus,Gallus domesticus,Gallus gallus domesticus,Chicken
D002843 Chromatin The material of CHROMOSOMES. It is a complex of DNA; HISTONES; and nonhistone proteins (CHROMOSOMAL PROTEINS, NON-HISTONE) found within the nucleus of a cell. Chromatins
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA

Related Publications

S I Usachenko, and I M Gavin, and S G Bavykin
July 2008, Proceedings of the National Academy of Sciences of the United States of America,
S I Usachenko, and I M Gavin, and S G Bavykin
January 2006, Chromosome research : an international journal on the molecular, supramolecular and evolutionary aspects of chromosome biology,
S I Usachenko, and I M Gavin, and S G Bavykin
August 1978, Proceedings of the National Academy of Sciences of the United States of America,
S I Usachenko, and I M Gavin, and S G Bavykin
January 2012, Bioscience, biotechnology, and biochemistry,
S I Usachenko, and I M Gavin, and S G Bavykin
September 1977, Nature,
S I Usachenko, and I M Gavin, and S G Bavykin
August 2017, The journal of physical chemistry. B,
S I Usachenko, and I M Gavin, and S G Bavykin
November 2012, Proceedings of the National Academy of Sciences of the United States of America,
S I Usachenko, and I M Gavin, and S G Bavykin
February 1978, European journal of biochemistry,
S I Usachenko, and I M Gavin, and S G Bavykin
September 1997, Nature,
Copied contents to your clipboard!