Identification of suberimidate cross-linking sites of four histone sequences in H1-depleted chromatin. Histone arrangement in nucleosome core. 1979

M Suda, and K Iwai

The arrangement of 8 histones in the nucleosome core has been investigated by identifying the sites of 4 histone sequences cross-linked with a bifunctional amino-group reagent, dimethyl suberimidate, selected from among 4 diimidoesters of various linker lengths examined. H1-depleted calf thymus chromatin was allowed to react with 14C-labeled suberimidate at pH 8.5 and 0 degrees C. The cross-linked chromatin was then digested exhaustively with trypsin. Almost all the histone fragments were released from the chromatin with 0.25 M HCl and chromatographed on several columns and on paper. Cross-linked peptides were detected by analyzing the content of radioactive suberimidoylbislysine after acid hydrolysis. The chromatographic procedure developed here showed that the whole histone fragments contained 29 mol% of the total linked reagent as suberimidoylbisylsine. The 5 finally purified cross-linked peptides were identified from the total and N-terminal amino acids of each pair of peptides separated by two-dimensional cellulose thin layer chromatography after cutting the linker by ammonolysis. Thus, intramolecular cross-linking was found between Lys-5 and Lys-9 of H2A, and Lys-34 and Lys-85 of H2B, while intermolecular cross-linking was found between Lys-24 (or 27) of H2B and Lys-74 of H2A, Lys-85 of H2B and Lys-91 of H4, and Lys-120 of H2B and Lys-115 of H3 and/or Lys-77 of H4. Most of these lysine residues are located in the DNA-binding segments of the 4 histone sequences identified previously [Kato, Y. & Iwai, K, (1977) J. Biochem. 81, 621--630]. All the 5 or 6 cross-links can be located in a heterotypic tetramer consisting of one molecule each of H2A, H2B, H3, and H4, and a model of the histone arrangement in the tetramer is proposed. Two such tetramers may compose to the histone octamer in the nucleosome core.

UI MeSH Term Description Entries
D007096 Imidoesters Esters of the hypothetical imidic acids. They react with amines or amino acids to form amidines and are therefore used to modify protein structures and as cross-linking agents. Imidates
D008239 Lysine An essential amino acid. It is often added to animal feed. Enisyl,L-Lysine,Lysine Acetate,Lysine Hydrochloride,Acetate, Lysine,L Lysine
D009707 Nucleosomes The repeating structural units of chromatin, each consisting of approximately 200 base pairs of DNA wound around a protein core. This core is composed of the histones H2A, H2B, H3, and H4. Dinucleosomes,Polynucleosomes,Dinucleosome,Nucleosome,Polynucleosome
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002843 Chromatin The material of CHROMOSOMES. It is a complex of DNA; HISTONES; and nonhistone proteins (CHROMOSOMAL PROTEINS, NON-HISTONE) found within the nucleus of a cell. Chromatins
D003432 Cross-Linking Reagents Reagents with two reactive groups, usually at opposite ends of the molecule, that are capable of reacting with and thereby forming bridges between side chains of amino acids in proteins; the locations of naturally reactive areas within proteins can thereby be identified; may also be used for other macromolecules, like glycoproteins, nucleic acids, or other. Bifunctional Reagent,Bifunctional Reagents,Cross Linking Reagent,Crosslinking Reagent,Cross Linking Reagents,Crosslinking Reagents,Linking Reagent, Cross,Linking Reagents, Cross,Reagent, Bifunctional,Reagent, Cross Linking,Reagent, Crosslinking,Reagents, Bifunctional,Reagents, Cross Linking,Reagents, Cross-Linking,Reagents, Crosslinking
D004120 Dimethyl Suberimidate The methyl imidoester of suberic acid used to produce cross links in proteins. Each end of the imidoester will react with an amino group in the protein molecule to form an amidine. Bismethyl Suberimidate,Dimethylsuberimidate,Suberimidate, Bismethyl,Suberimidate, Dimethyl
D006657 Histones Small chromosomal proteins (approx 12-20 kD) possessing an open, unfolded structure and attached to the DNA in cell nuclei by ionic linkages. Classification into the various types (designated histone I, histone II, etc.) is based on the relative amounts of arginine and lysine in each. Histone,Histone H1,Histone H1(s),Histone H2a,Histone H2b,Histone H3,Histone H3.3,Histone H4,Histone H5,Histone H7

Related Publications

M Suda, and K Iwai
December 1980, European journal of biochemistry,
M Suda, and K Iwai
February 1996, The Journal of biological chemistry,
M Suda, and K Iwai
January 1980, Preparative biochemistry,
M Suda, and K Iwai
September 1978, Proceedings of the National Academy of Sciences of the United States of America,
M Suda, and K Iwai
June 1981, Journal of biochemistry,
M Suda, and K Iwai
October 1986, Journal of biomolecular structure & dynamics,
Copied contents to your clipboard!