Early post-natal development of neuronal function in the kitten's visual cortex: a laminar analysis. 1984

K Albus, and W Wolf

The normal post-natal development of visual cortical functions was studied by recording extracellularly from 612 single neurones in the striate and parastriate cortex of anaesthetized and paralysed kittens, ranging in age from 6 to 24 days. Analyses have been made of laminar differences in the developmental trends of receptive field properties such as orientation specificity and spatial organization of 'on' and 'off' zones. At the beginning of the second post-natal week the majority of neurones (76%) only respond to light 'off' (unimodal 'off' neurones). Only later does the frequency of occurrence of unimodal 'on' neurones and of bimodal or multimodal neurones (with spatially segregated 'on' and 'off' zones arranged side by side) increase so that, by the middle of the fourth week, about equal numbers of these three receptive field types are found. The proportion of 'on-off' neurones (with spatially coincident 'on' and 'off' zones) remains low (between 9% and 12%) during the early post-natal period. In layers 4 and 6 of areas 17 and 18 the frequency of occurrence of visual neurones is quite normal even in the youngest kittens, whereas the probability of recording neurones in layers 2/3 and 5 in kittens less than 14 days old is remarkably low and only gradually improves up to the middle of the fourth week. A very rudimentary order in the spatial arrangement of orientation-specific neurones and ocular dominance distribution is observed even in very young kittens. This order improves rapidly and reaches adult levels during the fourth post-natal week. In visually inexperienced kittens, on average 11% of all responsive neurones are selective for the orientation of elongated visual stimuli, and 58% are biased. The proportion of orientation-selective cells begins to increase rapidly about two days after lid opening, and proportions of orientation-selective cells similar to that in the adult are reached by the end of the fourth post-natal week. Orientation-selective neurones in kittens less than 10 days old are only found in layers 4 and 6 and the lower part of layer 3. In layers 2/3 and 5 they are first seen in larger proportions by the beginning of the third post-natal week. Our results show that, during the first post-natal month, the time course of the functional development of visual cortical neurones depends on receptive field type and on intracortical location.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D008959 Models, Neurological Theoretical representations that simulate the behavior or activity of the neurological system, processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Neurologic Models,Model, Neurological,Neurologic Model,Neurological Model,Neurological Models,Model, Neurologic,Models, Neurologic
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010364 Pattern Recognition, Visual Mental process to visually perceive a critical number of facts (the pattern), such as characters, shapes, displays, or designs. Recognition, Visual Pattern,Visual Pattern Recognition
D010775 Photic Stimulation Investigative technique commonly used during ELECTROENCEPHALOGRAPHY in which a series of bright light flashes or visual patterns are used to elicit brain activity. Stimulation, Photic,Visual Stimulation,Photic Stimulations,Stimulation, Visual,Stimulations, Photic,Stimulations, Visual,Visual Stimulations
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000831 Animals, Newborn Refers to animals in the period of time just after birth. Animals, Neonatal,Animal, Neonatal,Animal, Newborn,Neonatal Animal,Neonatal Animals,Newborn Animal,Newborn Animals
D014793 Visual Cortex Area of the OCCIPITAL LOBE concerned with the processing of visual information relayed via VISUAL PATHWAYS. Area V2,Area V3,Area V4,Area V5,Associative Visual Cortex,Brodmann Area 18,Brodmann Area 19,Brodmann's Area 18,Brodmann's Area 19,Cortical Area V2,Cortical Area V3,Cortical Area V4,Cortical Area V5,Secondary Visual Cortex,Visual Cortex Secondary,Visual Cortex V2,Visual Cortex V3,Visual Cortex V3, V4, V5,Visual Cortex V4,Visual Cortex V5,Visual Cortex, Associative,Visual Motion Area,Extrastriate Cortex,Area 18, Brodmann,Area 18, Brodmann's,Area 19, Brodmann,Area 19, Brodmann's,Area V2, Cortical,Area V3, Cortical,Area V4, Cortical,Area V5, Cortical,Area, Visual Motion,Associative Visual Cortices,Brodmanns Area 18,Brodmanns Area 19,Cortex Secondary, Visual,Cortex V2, Visual,Cortex V3, Visual,Cortex, Associative Visual,Cortex, Extrastriate,Cortex, Secondary Visual,Cortex, Visual,Cortical Area V3s,Extrastriate Cortices,Secondary Visual Cortices,V3, Cortical Area,V3, Visual Cortex,V4, Area,V4, Cortical Area,V5, Area,V5, Cortical Area,V5, Visual Cortex,Visual Cortex Secondaries,Visual Cortex, Secondary,Visual Motion Areas
D014794 Visual Fields The total area or space visible in a person's peripheral vision with the eye looking straightforward. Field, Visual,Fields, Visual,Visual Field

Related Publications

K Albus, and W Wolf
January 1996, Visual neuroscience,
K Albus, and W Wolf
November 1972, Journal of neurochemistry,
K Albus, and W Wolf
January 1976, Cold Spring Harbor symposia on quantitative biology,
K Albus, and W Wolf
February 2013, Journal of neurophysiology,
K Albus, and W Wolf
July 1975, The Journal of physiology,
K Albus, and W Wolf
January 1982, Vision research,
K Albus, and W Wolf
March 1987, The Journal of physiology,
K Albus, and W Wolf
January 1980, Trabajos del Instituto Cajal,
K Albus, and W Wolf
January 1994, The Journal of comparative neurology,
Copied contents to your clipboard!