The kinetics of intramolecular cross-linking of the band 3 protein in the red blood cell membrane by 4,4'-diisothiocyano dihydrostilbene-2,2'-disulfonic acid (H2DIDS). 1982

L Kampmann, and S Lepke, and H Fasold, and G Fritzsch, and H Passow

The two isothiocyanate groups of the anion transport inhibitor 4,4'-diisothiocyano dihydrostilbene-2-2'-disulfonate (H2DIDS) may react covalently with two lysine residues called a and b that reside on the chymotryptic 60,000 Dalton and 35,000 Dalton segments, respectively, of the band 3 protein of the human erythrocyte membrane. Under suitable conditions, the reaction leads to the establishment of intramolecular cross-links between a and b (M.L. Jennings & H. Passow, 1979, Biochim. Biophys. Acta 554:498-519). In the present work, the time course of the reactions with a and b, and of the establishment of the cross-link were investigated experimentally and compared with simple mathematical models of the reaction sequence. The rates of reaction with a and b were found to increase with increasing pH. Regardless of pH, the rate of reaction with a exceeds that with b several-fold. Once the H2DIDS molecule has reacted with a, the rate of the subsequent reaction of the other isothiocyanate group with b is reduced by about 1/30. The reactions that follow the unilateral attachment to site b are not yet clear. A more detailed analysis of the time course of the cross-linking reaction suggests that a satisfactory description of the kinetics requires the assumption that the H2DIDS binding site may exist in two different states, and that the transition from one state to the other is associated with changes of the reactivities of either lys a alone or of both lys a and b. This led to the formulation of the two-states model of the H2DIDS binding site, which is supported by other pieces of independent evidence. The analysis of the pH dependence of the rate of thiocyanylation of b shows that the apparent pK value of that lysine residue is about 9.9 to 10.0 and hence slightly lower than the intrinsic pK of a lysine residue in an aqueous environment.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008956 Models, Chemical Theoretical representations that simulate the behavior or activity of chemical processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Chemical Models,Chemical Model,Model, Chemical
D008968 Molecular Conformation The characteristic three-dimensional shape of a molecule. Molecular Configuration,3D Molecular Structure,Configuration, Molecular,Molecular Structure, Three Dimensional,Three Dimensional Molecular Structure,3D Molecular Structures,Configurations, Molecular,Conformation, Molecular,Conformations, Molecular,Molecular Configurations,Molecular Conformations,Molecular Structure, 3D,Molecular Structures, 3D,Structure, 3D Molecular,Structures, 3D Molecular
D003432 Cross-Linking Reagents Reagents with two reactive groups, usually at opposite ends of the molecule, that are capable of reacting with and thereby forming bridges between side chains of amino acids in proteins; the locations of naturally reactive areas within proteins can thereby be identified; may also be used for other macromolecules, like glycoproteins, nucleic acids, or other. Bifunctional Reagent,Bifunctional Reagents,Cross Linking Reagent,Crosslinking Reagent,Cross Linking Reagents,Crosslinking Reagents,Linking Reagent, Cross,Linking Reagents, Cross,Reagent, Bifunctional,Reagent, Cross Linking,Reagent, Crosslinking,Reagents, Bifunctional,Reagents, Cross Linking,Reagents, Cross-Linking,Reagents, Crosslinking
D004910 Erythrocyte Membrane The semi-permeable outer structure of a red blood cell. It is known as a red cell 'ghost' after HEMOLYSIS. Erythrocyte Ghost,Red Cell Cytoskeleton,Red Cell Ghost,Erythrocyte Cytoskeleton,Cytoskeleton, Erythrocyte,Cytoskeleton, Red Cell,Erythrocyte Cytoskeletons,Erythrocyte Ghosts,Erythrocyte Membranes,Ghost, Erythrocyte,Ghost, Red Cell,Membrane, Erythrocyte,Red Cell Cytoskeletons,Red Cell Ghosts
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D001457 Anion Exchange Protein 1, Erythrocyte A major integral transmembrane protein of the ERYTHROCYTE MEMBRANE. It is the anion exchanger responsible for electroneutral transporting in CHLORIDE IONS in exchange of BICARBONATE IONS allowing CO2 uptake and transport from tissues to lungs by the red blood cells. Genetic mutations that result in a loss of the protein function have been associated with type 4 HEREDITARY SPHEROCYTOSIS. Anion Transport Protein, Erythrocyte,Band 3 Protein,Erythrocyte Anion Transport Protein,Erythrocyte Membrane Band 3 Protein,AE1 Anion Exchanger,AE1 Chloride-Bicarbonate Exchanger,AE1 Cl- HCO3- Exchanger,AE1 Gene Product,Anion Exchanger 1,Antigens, CD233,Band 3 Anion Transport Protein,Band III Protein,CD233 Antigen,CD233 Antigens,Capnophorin,EPB3 Protein,Erythrocyte Anion Exchanger,Erythrocyte Membrane Anion Transport Protein,Erythrocyte Membrane Protein Band 3, Diego Blood Group,Protein Band 3,SLC4A1 Protein,Solute Carrier Family 4 Member 1,Solute Carrier Family 4, Anion Exchanger, Member 1,AE1 Chloride Bicarbonate Exchanger,AE1 Cl HCO3 Exchanger,Anion Exchanger, Erythrocyte,Antigen, CD233,Chloride-Bicarbonate Exchanger, AE1,Exchanger 1, Anion,Protein, EPB3
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D012856 4-Acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic Acid A non-penetrating amino reagent (commonly called SITS) which acts as an inhibitor of anion transport in erythrocytes and other cells. 4-Acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic Acid, Disodium Salt,SITS,SITS Disodium Salt,4 Acetamido 4' isothiocyanatostilbene 2,2' disulfonic Acid,Disodium Salt, SITS

Related Publications

L Kampmann, and S Lepke, and H Fasold, and G Fritzsch, and H Passow
January 1994, The Journal of biological chemistry,
L Kampmann, and S Lepke, and H Fasold, and G Fritzsch, and H Passow
March 1979, The Journal of membrane biology,
L Kampmann, and S Lepke, and H Fasold, and G Fritzsch, and H Passow
November 1982, Plant physiology,
L Kampmann, and S Lepke, and H Fasold, and G Fritzsch, and H Passow
December 1991, Biochemical pharmacology,
L Kampmann, and S Lepke, and H Fasold, and G Fritzsch, and H Passow
November 1986, Biochemical and biophysical research communications,
L Kampmann, and S Lepke, and H Fasold, and G Fritzsch, and H Passow
October 1978, Naunyn-Schmiedeberg's archives of pharmacology,
L Kampmann, and S Lepke, and H Fasold, and G Fritzsch, and H Passow
May 1993, The Journal of general physiology,
Copied contents to your clipboard!