Basolateral potassium membrane permeability of A6 cells and cell volume regulation. 1994

J Ehrenfeld, and C Raschi, and E Brochiero
Department of Cellular and Molecular Biology, Commissariat à l'Energie Atomique, Villefranche/Mer, France.

The K+ permeabilities (86Rb(K) transport) of the basolateral membranes (JbK) of a renal cell line (A6) were compared under isosmotic and hypo-osmotic conditions (serosal side) to identify the various components involved in cell volume regulation. Changing the serosal solution to a hypo-osmotic one (165 mOsm) induced a fast transient increase in Cai (max < 1 min) and cell swelling (max at 3-5 min) followed by a regulatory volume decrease (5-30 min) and rise in the SCC (stabilization at 30 min). In isosmotic conditions (247 mOsm), the 86Rb(K) transport and the SCC were partially blocked by Ba2+, quinidine, TEA and glibenclamide, the latter being the least effective. Changing the osmolarity from isosmotic to hypo-osmotic resulted in an immediate (within the first 3-6 min) stimulation of the 86Rb(K) transport followed by a progressive decline to a stable value higher than that found in isosmotic conditions. A serosal Ca(2+)-free media or quinidine addition did not affect the initial osmotic stimulation of JbK but prevented its "secondary regulation", whereas TEA, glibenclamide and DIDS completely blocked the initial JbK increase. Under hypo-osmotic conditions, the initial JbK increase was enhanced by the presence of 1 mM of barium and delayed with higher concentrations (5 mM). In addition, cell volume regulation was fully blocked by quinidine, DIDS, NPPB and glibenclamide, while partly inhibited by TEA and calcium-free media. We propose that a TEA- and glibenclamide-sensitive but quinidine-insensitive increase in K+ permeability is involved in the very first phase of volume regulation of A6 cells submitted to hypo-osmotic media. In achieving cell volume regulation, it would play a complementary role to the quinidine-sensitive K+ permeability mediated by the observed calcium rise.

UI MeSH Term Description Entries
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D009997 Osmotic Pressure The pressure required to prevent the passage of solvent through a semipermeable membrane that separates a pure solvent from a solution of the solvent and solute or that separates different concentrations of a solution. It is proportional to the osmolality of the solution. Osmotic Shock,Hypertonic Shock,Hypertonic Stress,Hypotonic Shock,Hypotonic Stress,Osmotic Stress,Hypertonic Shocks,Hypertonic Stresses,Hypotonic Shocks,Hypotonic Stresses,Osmotic Pressures,Osmotic Shocks,Osmotic Stresses,Pressure, Osmotic,Pressures, Osmotic,Shock, Hypertonic,Shock, Hypotonic,Shock, Osmotic,Shocks, Hypertonic,Shocks, Hypotonic,Shocks, Osmotic,Stress, Hypertonic,Stress, Hypotonic,Stress, Osmotic,Stresses, Hypertonic,Stresses, Hypotonic,Stresses, Osmotic
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011802 Quinidine An optical isomer of quinine, extracted from the bark of the CHINCHONA tree and similar plant species. This alkaloid dampens the excitability of cardiac and skeletal muscles by blocking sodium and potassium currents across cellular membranes. It prolongs cellular ACTION POTENTIALS, and decreases automaticity. Quinidine also blocks muscarinic and alpha-adrenergic neurotransmission. Adaquin,Apo-Quinidine,Chinidin,Quincardine,Quinidex,Quinidine Sulfate,Quinora,Apo Quinidine,Sulfate, Quinidine
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002463 Cell Membrane Permeability A quality of cell membranes which permits the passage of solvents and solutes into and out of cells. Permeability, Cell Membrane
D005905 Glyburide An antidiabetic sulfonylurea derivative with actions like those of chlorpropamide Glibenclamide,Daonil,Diabeta,Euglucon 5,Euglucon N,Glybenclamide,HB-419,HB-420,Maninil,Micronase,Neogluconin,HB 419,HB 420,HB419,HB420

Related Publications

J Ehrenfeld, and C Raschi, and E Brochiero
October 1991, The Journal of membrane biology,
J Ehrenfeld, and C Raschi, and E Brochiero
June 1993, The Journal of membrane biology,
J Ehrenfeld, and C Raschi, and E Brochiero
June 1993, Pflugers Archiv : European journal of physiology,
J Ehrenfeld, and C Raschi, and E Brochiero
April 1992, Pflugers Archiv : European journal of physiology,
J Ehrenfeld, and C Raschi, and E Brochiero
January 1991, Pflugers Archiv : European journal of physiology,
J Ehrenfeld, and C Raschi, and E Brochiero
April 1979, Experimental cell research,
J Ehrenfeld, and C Raschi, and E Brochiero
January 1994, Renal physiology and biochemistry,
J Ehrenfeld, and C Raschi, and E Brochiero
April 1988, Journal of cellular physiology,
Copied contents to your clipboard!