Dopamine modulates GABAc receptors mediating inhibition of calcium entry into and transmitter release from bipolar cell terminals in tiger salamander retina. 1995

D P Wellis, and F S Werblin
Department of Molecular and Cell Biology, University of California, Berkeley 94720, USA.

Using optical recording techniques, we directly monitored pre- and postsynaptic calcium dynamics at bipolar cell terminals while inhibiting synaptic release with applied GABA and modulating inhibition with dopamine. To monitor pre-synaptic activity, individual bipolar cells in the retinal slice were filled with either fura-2 or fluo-3 through a patch electrode. Calcium entry into bipolar terminals, elicited by depolarization from -60 mV to 0 mV, was reduced to 36% of control in the presence of 200 microM bath-applied GABA. Further addition of 100 microM dopamine to the bath relieved the GABAergic inhibition and nearly doubled the calcium entry. Yet dopamine alone had no apparent direct effect upon calcium entry. The relief from GABAergic inhibition could be reproduced with SKF-38393, a dopamine D1 receptor agonist, and with forskolin, an adenylyl cyclase activator, suggesting that dopamine acts through a cAMP second-messenger pathway. To monitor transmitter release from bipolar cells, slices were loaded with fura-2AM, a membrane permeable form of the dye. Puffs of 110 mM KCl at bipolar dendrites depolarized bipolar cells and elicited calcium signals that could be monitored both at bipolar terminals and in postsynaptic cells. Consistent with the results above, GABA inhibited calcium entry at bipolar terminals and also reduced transmitter release, measured as a decrease in calcium entry in amacrine and ganglion cells. The addition of dopamine relieved this inhibition and increased transmitter release. Our results show the spatiotemporal correlation between the GABAergic inhibition of calcium entry at bipolar terminals, the resulting reduction in postsynaptic activity, and the relief of this inhibition with dopamine.

UI MeSH Term Description Entries
D007814 Larva Wormlike or grublike stage, following the egg in the life cycle of insects, worms, and other metamorphosing animals. Maggots,Tadpoles,Larvae,Maggot,Tadpole
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D012160 Retina The ten-layered nervous tissue membrane of the eye. It is continuous with the OPTIC NERVE and receives images of external objects and transmits visual impulses to the brain. Its outer surface is in contact with the CHOROID and the inner surface with the VITREOUS BODY. The outer-most layer is pigmented, whereas the inner nine layers are transparent. Ora Serrata
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002121 Calcium Channel Blockers A class of drugs that act by selective inhibition of calcium influx through cellular membranes. Calcium Antagonists, Exogenous,Calcium Blockaders, Exogenous,Calcium Channel Antagonist,Calcium Channel Blocker,Calcium Channel Blocking Drug,Calcium Inhibitors, Exogenous,Channel Blockers, Calcium,Exogenous Calcium Blockader,Exogenous Calcium Inhibitor,Calcium Channel Antagonists,Calcium Channel Blocking Drugs,Exogenous Calcium Antagonists,Exogenous Calcium Blockaders,Exogenous Calcium Inhibitors,Antagonist, Calcium Channel,Antagonists, Calcium Channel,Antagonists, Exogenous Calcium,Blockader, Exogenous Calcium,Blocker, Calcium Channel,Blockers, Calcium Channel,Calcium Blockader, Exogenous,Calcium Inhibitor, Exogenous,Channel Antagonist, Calcium,Channel Blocker, Calcium,Inhibitor, Exogenous Calcium
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine
D005470 Fluorometry An analytical method for detecting and measuring FLUORESCENCE in compounds or targets such as cells, proteins, or nucleotides, or targets previously labeled with FLUORESCENCE AGENTS. Fluorimetry,Fluorometric Analysis,Analysis, Fluorometric
D005680 gamma-Aminobutyric Acid The most common inhibitory neurotransmitter in the central nervous system. 4-Aminobutyric Acid,GABA,4-Aminobutanoic Acid,Aminalon,Aminalone,Gammalon,Lithium GABA,gamma-Aminobutyric Acid, Calcium Salt (2:1),gamma-Aminobutyric Acid, Hydrochloride,gamma-Aminobutyric Acid, Monolithium Salt,gamma-Aminobutyric Acid, Monosodium Salt,gamma-Aminobutyric Acid, Zinc Salt (2:1),4 Aminobutanoic Acid,4 Aminobutyric Acid,Acid, Hydrochloride gamma-Aminobutyric,GABA, Lithium,Hydrochloride gamma-Aminobutyric Acid,gamma Aminobutyric Acid,gamma Aminobutyric Acid, Hydrochloride,gamma Aminobutyric Acid, Monolithium Salt,gamma Aminobutyric Acid, Monosodium Salt
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014562 Urodela An order of the Amphibia class which includes salamanders and newts. They are characterized by usually having slim bodies and tails, four limbs of about equal size (except in Sirenidae), and a reduction in skull bones. Amphiuma,Caudata,Eel, Congo,Salamanders,Congo Eel,Congo Eels,Eels, Congo,Salamander

Related Publications

D P Wellis, and F S Werblin
December 1996, Vision research,
D P Wellis, and F S Werblin
March 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience,
D P Wellis, and F S Werblin
October 2000, The European journal of neuroscience,
D P Wellis, and F S Werblin
December 1989, Proceedings of the National Academy of Sciences of the United States of America,
D P Wellis, and F S Werblin
November 2006, The Journal of physiology,
D P Wellis, and F S Werblin
October 2004, The Journal of neuroscience : the official journal of the Society for Neuroscience,
D P Wellis, and F S Werblin
October 1985, The Journal of physiology,
D P Wellis, and F S Werblin
March 2005, Vision research,
D P Wellis, and F S Werblin
June 1985, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!