A novel GABA receptor on bipolar cell terminals in the tiger salamander retina. 1994

P D Lukasiewicz, and B R Maple, and F S Werblin
Department of Ophthalmology, Washington University, St. Louis, Missouri 63110.

We studied the pharmacology of the GABA receptors on bipolar cell terminals in the retinal slice preparation. Whole-cell patch-clamp recordings were made from the somas of bipolar cells and GABA was puffed near their terminals, after synaptic transmission was blocked. GABA puffs evoked a large chloride current that was reduced by picrotoxin, but in many cells this current was insensitive to blockade by the competitive GABAA receptor antagonists bicuculline and SR95531. Pentobarbital, an enhancer of GABAA receptor-mediated responses, did not significantly increase the magnitude of the current responses to GABA puffed at the bipolar cell terminals. To confirm the effectiveness of GABAA antagonists and pentobarbital in the slice preparation, we measured GABA currents in ganglion cells. In contrast to bipolar cells, the ganglion cell GABA responses were strongly reduced by both bicuculline and SR95531. In addition, pentobarbital strongly enhanced the action of GABA at the ganglion cells. The isomeric GABA agonists cis- and transaminocrotonic acid (CACA and TACA), elicited picrotoxin-sensitive currents in both bipolar and ganglion cells. TACA was more effective than CACA at both cell types. In bipolar cells, TACA and CACA currents were relatively resistant to bicuculline blockade, but in ganglion cells both currents were reduced by bicuculline. GABA receptors on bipolar terminals appear to be pharmacologically different from the GABA receptors found on ganglion cell dendrites. The bipolar cell terminal GABA receptor pharmacology is similar to the pharmacology reported for the rho 1 GABA receptor subunit that was isolated from retina and expressed in Xenopus oocytes (Cutting et al., 1991; Polenzani et al., 1991; Shimada et al., 1992). This receptor, which is both bicuculline and pentobarbital insensitive, has been called the GABAC receptor (Johnston, 1986; Shimada et al., 1992). However, some bipolar cells were somewhat sensitive to blockade by bicuculline, suggesting that these cells had both GABAA and GABAC receptors on their bipolar terminals.

UI MeSH Term Description Entries
D009118 Muscimol A neurotoxic isoxazole isolated from species of AMANITA. It is obtained by decarboxylation of IBOTENIC ACID. Muscimol is a potent agonist of GABA-A RECEPTORS and is used mainly as an experimental tool in animal and tissue studies. Agarin,Pantherine
D010424 Pentobarbital A short-acting barbiturate that is effective as a sedative and hypnotic (but not as an anti-anxiety) agent and is usually given orally. It is prescribed more frequently for sleep induction than for sedation but, like similar agents, may lose its effectiveness by the second week of continued administration. (From AMA Drug Evaluations Annual, 1994, p236) Mebubarbital,Mebumal,Diabutal,Etaminal,Ethaminal,Nembutal,Pentobarbital Sodium,Pentobarbital, Monosodium Salt,Pentobarbitone,Sagatal,Monosodium Salt Pentobarbital
D010852 Picrotoxin A mixture of PICROTOXININ and PICROTIN that is a noncompetitive antagonist at GABA-A receptors acting as a convulsant. Picrotoxin blocks the GAMMA-AMINOBUTYRIC ACID-activated chloride ionophore. Although it is most often used as a research tool, it has been used as a CNS stimulant and an antidote in poisoning by CNS depressants, especially the barbiturates. 3,6-Methano-8H-1,5,7-trioxacyclopenta(ij)cycloprop(a)azulene-4,8(3H)-dione, hexahydro-2a-hydroxy-9-(1-hydroxy-1-methylethyl)-8b-methyl-, (1aR-(1aalpha,2abeta,3beta,6beta,6abeta,8aS*,8bbeta,9S*))-, compd. with (1aR-(1aalpha,2abeta,3beta,6beta,6abeta,8,Cocculin
D011724 Pyridazines Six-membered rings with two adjacent nitrogen atoms also called 1,2-diazine.
D011963 Receptors, GABA-A Cell surface proteins which bind GAMMA-AMINOBUTYRIC ACID and contain an integral membrane chloride channel. Each receptor is assembled as a pentamer from a pool of at least 19 different possible subunits. The receptors belong to a superfamily that share a common CYSTEINE loop. Benzodiazepine-Gaba Receptors,GABA-A Receptors,Receptors, Benzodiazepine,Receptors, Benzodiazepine-GABA,Receptors, Diazepam,Receptors, GABA-Benzodiazepine,Receptors, Muscimol,Benzodiazepine Receptor,Benzodiazepine Receptors,Benzodiazepine-GABA Receptor,Diazepam Receptor,Diazepam Receptors,GABA(A) Receptor,GABA-A Receptor,GABA-A Receptor alpha Subunit,GABA-A Receptor beta Subunit,GABA-A Receptor delta Subunit,GABA-A Receptor epsilon Subunit,GABA-A Receptor gamma Subunit,GABA-A Receptor rho Subunit,GABA-Benzodiazepine Receptor,GABA-Benzodiazepine Receptors,Muscimol Receptor,Muscimol Receptors,delta Subunit, GABA-A Receptor,epsilon Subunit, GABA-A Receptor,gamma-Aminobutyric Acid Subtype A Receptors,Benzodiazepine GABA Receptor,Benzodiazepine Gaba Receptors,GABA A Receptor,GABA A Receptor alpha Subunit,GABA A Receptor beta Subunit,GABA A Receptor delta Subunit,GABA A Receptor epsilon Subunit,GABA A Receptor gamma Subunit,GABA A Receptor rho Subunit,GABA A Receptors,GABA Benzodiazepine Receptor,GABA Benzodiazepine Receptors,Receptor, Benzodiazepine,Receptor, Benzodiazepine-GABA,Receptor, Diazepam,Receptor, GABA-A,Receptor, GABA-Benzodiazepine,Receptor, Muscimol,Receptors, Benzodiazepine GABA,Receptors, GABA A,Receptors, GABA Benzodiazepine,delta Subunit, GABA A Receptor,epsilon Subunit, GABA A Receptor,gamma Aminobutyric Acid Subtype A Receptors
D012160 Retina The ten-layered nervous tissue membrane of the eye. It is continuous with the OPTIC NERVE and receives images of external objects and transmits visual impulses to the brain. Its outer surface is in contact with the CHOROID and the inner surface with the VITREOUS BODY. The outer-most layer is pigmented, whereas the inner nine layers are transparent. Ora Serrata
D002712 Chlorides Inorganic compounds derived from hydrochloric acid that contain the Cl- ion. Chloride,Chloride Ion Level,Ion Level, Chloride,Level, Chloride Ion
D003437 Crotonates Derivatives of BUTYRIC ACID that include a double bond between carbon 2 and 3 of the aliphatic structure. Included under this heading are a broad variety of acid forms, salts, esters, and amides that include the aminobutryrate structure. 2-Butenoic Acids,Crotonic Acids,2 Butenoic Acids,Acids, 2-Butenoic,Acids, Crotonic
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D005680 gamma-Aminobutyric Acid The most common inhibitory neurotransmitter in the central nervous system. 4-Aminobutyric Acid,GABA,4-Aminobutanoic Acid,Aminalon,Aminalone,Gammalon,Lithium GABA,gamma-Aminobutyric Acid, Calcium Salt (2:1),gamma-Aminobutyric Acid, Hydrochloride,gamma-Aminobutyric Acid, Monolithium Salt,gamma-Aminobutyric Acid, Monosodium Salt,gamma-Aminobutyric Acid, Zinc Salt (2:1),4 Aminobutanoic Acid,4 Aminobutyric Acid,Acid, Hydrochloride gamma-Aminobutyric,GABA, Lithium,Hydrochloride gamma-Aminobutyric Acid,gamma Aminobutyric Acid,gamma Aminobutyric Acid, Hydrochloride,gamma Aminobutyric Acid, Monolithium Salt,gamma Aminobutyric Acid, Monosodium Salt

Related Publications

P D Lukasiewicz, and B R Maple, and F S Werblin
March 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience,
P D Lukasiewicz, and B R Maple, and F S Werblin
January 2000, Visual neuroscience,
P D Lukasiewicz, and B R Maple, and F S Werblin
April 1998, Journal of neurophysiology,
P D Lukasiewicz, and B R Maple, and F S Werblin
June 2003, The Journal of comparative neurology,
P D Lukasiewicz, and B R Maple, and F S Werblin
December 1996, Vision research,
P D Lukasiewicz, and B R Maple, and F S Werblin
July 1993, Vision research,
P D Lukasiewicz, and B R Maple, and F S Werblin
January 1994, Visual neuroscience,
P D Lukasiewicz, and B R Maple, and F S Werblin
March 2005, Vision research,
P D Lukasiewicz, and B R Maple, and F S Werblin
July 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience,
P D Lukasiewicz, and B R Maple, and F S Werblin
July 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Copied contents to your clipboard!