Temporal contrast enhancement via GABAC feedback at bipolar terminals in the tiger salamander retina. 1998

C J Dong, and F S Werblin
Department of Molecular and Cell Biology, Division of Neurobiology, University of California at Berkeley, Berkeley, California 94720, USA.

Most retinal amacrine (ACs) and ganglion cells (GCs) express temporal contrast by generating action potentials at only the onset and offset of the light stimulus. This study investigated the neural mechanisms that underlie this temporal contrast enhancement. Whole cell patch recordings were made from bipolar cells (BCs), ACs, and GCs in the retinal slice preparation. The cells were identified by the locations of their somas in the inner nuclear layer and ganglion cell layers, their characteristic light responses, and morphology revealed by Lucifer yellow staining. Depolarizing a single BC with a brief voltage pulse elicited a Cl- tail current that was completely abolished when Ca2+ entry to bipolar terminals was prevented, by either removing Ca2+ from the Ringer solution or blocking Ca2+ channels with Co2+. This suggests that the Cl- current is Ca2+-dependent. In those bipolar cells whose axon terminals were cutoff during slicing no Cl- current was observed, indicating that this current is generated at the synaptic terminals. The Cl- current consists of a predominant synaptic component that can be blocked by the non-N-methyl--aspartate (NMDA) glutamate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) or by the gamma-aminobutyric acid-C (GABAC) receptor antagonist picrotoxin. There also exists a relatively small nonsynaptic component. Thus both glutamatergic and GABAergic transmission were involved in the generation of this Cl- current, suggesting that it is mediated by a recurrent feedback to bipolar cells. Picrotoxin, which blocks both GABAC receptors at BC terminals and GABAA receptors on the dendrites of ACs and GCs, converted the light-elicited voltage response in most - ACs and GCs from transient to sustained. Bicuculline, which blocks only the GABAA receptors, did not prolong the transient response in - ACs and GCs. This suggests that a negative feedback mediated by the GABAC receptor on the bipolar terminals is responsible for making these responses transient. After the GABAergic feedback was blocked with picrotoxin the light-elicited voltage responses (recorded under current clamp) were more sustained than the current responses (recorded under voltage clamp) to the same light stimuli. This suggests that a voltage-dependent conductance converts the relatively transient current responses to more sustained voltage responses. Our results imply a synaptically driven local GABAergic feedback at bipolar terminals, mediated by GABAC receptors. This feedback appears to be a significant component of the mechanism underlying temporal contrast enhancement in - ACs and GCs.

UI MeSH Term Description Entries
D007546 Isoquinolines A group of compounds with the heterocyclic ring structure of benzo(c)pyridine. The ring structure is characteristic of the group of opium alkaloids such as papaverine. (From Stedman, 25th ed)
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010775 Photic Stimulation Investigative technique commonly used during ELECTROENCEPHALOGRAPHY in which a series of bright light flashes or visual patterns are used to elicit brain activity. Stimulation, Photic,Visual Stimulation,Photic Stimulations,Stimulation, Visual,Stimulations, Photic,Stimulations, Visual,Visual Stimulations
D012160 Retina The ten-layered nervous tissue membrane of the eye. It is continuous with the OPTIC NERVE and receives images of external objects and transmits visual impulses to the brain. Its outer surface is in contact with the CHOROID and the inner surface with the VITREOUS BODY. The outer-most layer is pigmented, whereas the inner nine layers are transparent. Ora Serrata
D005246 Feedback A mechanism of communication within a system in that the input signal generates an output response which returns to influence the continued activity or productivity of that system. Feedbacks
D005456 Fluorescent Dyes Chemicals that emit light after excitation by light. The wave length of the emitted light is usually longer than that of the incident light. Fluorochromes are substances that cause fluorescence in other substances, i.e., dyes used to mark or label other compounds with fluorescent tags. Flourescent Agent,Fluorescent Dye,Fluorescent Probe,Fluorescent Probes,Fluorochrome,Fluorochromes,Fluorogenic Substrates,Fluorescence Agents,Fluorescent Agents,Fluorogenic Substrate,Agents, Fluorescence,Agents, Fluorescent,Dyes, Fluorescent,Probes, Fluorescent,Substrates, Fluorogenic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012165 Retinal Ganglion Cells Neurons of the innermost layer of the retina, the internal plexiform layer. They are of variable sizes and shapes, and their axons project via the OPTIC NERVE to the brain. A small subset of these cells act as photoreceptors with projections to the SUPRACHIASMATIC NUCLEUS, the center for regulating CIRCADIAN RHYTHM. Cell, Retinal Ganglion,Cells, Retinal Ganglion,Ganglion Cell, Retinal,Ganglion Cells, Retinal,Retinal Ganglion Cell
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor

Related Publications

C J Dong, and F S Werblin
July 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience,
C J Dong, and F S Werblin
March 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience,
C J Dong, and F S Werblin
March 2005, Vision research,
C J Dong, and F S Werblin
June 2003, The Journal of comparative neurology,
C J Dong, and F S Werblin
December 1996, Vision research,
C J Dong, and F S Werblin
December 1989, Proceedings of the National Academy of Sciences of the United States of America,
C J Dong, and F S Werblin
December 2001, The Journal of neuroscience : the official journal of the Society for Neuroscience,
C J Dong, and F S Werblin
June 1985, Proceedings of the National Academy of Sciences of the United States of America,
C J Dong, and F S Werblin
December 2002, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Copied contents to your clipboard!