Characterization of iron (II).bleomycin-mediated RNA strand scission. 1993

C E Holmes, and B J Carter, and S M Hecht
Department of Chemistry, University of Virginia, Charlottesville 22901.

The ability of iron(II).bleomycin to mediate RNA degradation was further characterized. At micromolar concentrations, FeII.BLM was shown to effect cleavage of Escherichia coli tRNA(1His) and a Schizosaccharomyces pombe amber suppressor tRNA construct in an efficient fashion. In contrast, E. coli tRNA(Cys) and yeast mitochondrial tRNA(Asp) and tRNA(fMet) precursors were not substrates for FeII.BLM. Also shown to be a good substrate for cleavage by FeII.BLM was yeast 5S ribosomal RNA. Since HIV-1 reverse transcriptase mRNA has previously been shown to be degraded by Fe.BLM (Carter et al., 1990a), members of the three major classes of RNA have now been shown to undergo Fe.BLM-mediated strand scission. For each of the substrate RNAs, cleavage occurred at sites unique to that substrate. Although RNA cleavage occurred at numerous sequences, 5'-G-pyr-3' sites were prominent. Likewise, while cleavage was noted in regions anticipated to be double-stranded, as well as in single-stranded regions, a disproportionate number of cleavages were noted at the junction between single- and double-stranded regions. As found in earlier studies, RNA cleavage was much more selective than DNA cleavage. Further, when RNA cleavage was carried out in the presence of reagents such as Mg2+, spermidine, and NaCl, the selectivity of cleavage was further enhanced. The highly selective and efficient cleavage of a number of RNA molecules reinforces our earlier suggestion that RNA may constitute a therapeutically relevant target for bleomycin.

UI MeSH Term Description Entries
D007202 Indicators and Reagents Substances used for the detection, identification, analysis, etc. of chemical, biological, or pathologic processes or conditions. Indicators are substances that change in physical appearance, e.g., color, at or approaching the endpoint of a chemical titration, e.g., on the passage between acidity and alkalinity. Reagents are substances used for the detection or determination of another substance by chemical or microscopical means, especially analysis. Types of reagents are precipitants, solvents, oxidizers, reducers, fluxes, and colorimetric reagents. (From Grant & Hackh's Chemical Dictionary, 5th ed, p301, p499) Indicator,Reagent,Reagents,Indicators,Reagents and Indicators
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D001761 Bleomycin A complex of related glycopeptide antibiotics from Streptomyces verticillus consisting of bleomycin A2 and B2. It inhibits DNA metabolism and is used as an antineoplastic, especially for solid tumors. BLEO-cell,Blanoxan,Blenoxane,Bleolem,Bleomicina,Bleomycin A(2),Bleomycin A2,Bleomycin B(2),Bleomycin B2,Bleomycin Sulfate,Bleomycins,Bleomycinum Mack,Bléomycine Bellon,BLEO cell,BLEOcell,Bellon, Bléomycine,Mack, Bleomycinum,Sulfate, Bleomycin
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005990 Glycerol A trihydroxy sugar alcohol that is an intermediate in carbohydrate and lipid metabolism. It is used as a solvent, emollient, pharmaceutical agent, or sweetening agent. 1,2,3-Propanetriol,Glycerin,1,2,3-Trihydroxypropane,Glycerine
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D012313 RNA A polynucleotide consisting essentially of chains with a repeating backbone of phosphate and ribose units to which nitrogenous bases are attached. RNA is unique among biological macromolecules in that it can encode genetic information, serve as an abundant structural component of cells, and also possesses catalytic activity. (Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) RNA, Non-Polyadenylated,Ribonucleic Acid,Gene Products, RNA,Non-Polyadenylated RNA,Acid, Ribonucleic,Non Polyadenylated RNA,RNA Gene Products,RNA, Non Polyadenylated
D012343 RNA, Transfer The small RNA molecules, 73-80 nucleotides long, that function during translation (TRANSLATION, GENETIC) to align AMINO ACIDS at the RIBOSOMES in a sequence determined by the mRNA (RNA, MESSENGER). There are about 30 different transfer RNAs. Each recognizes a specific CODON set on the mRNA through its own ANTICODON and as aminoacyl tRNAs (RNA, TRANSFER, AMINO ACYL), each carries a specific amino acid to the ribosome to add to the elongating peptide chains. Suppressor Transfer RNA,Transfer RNA,tRNA,RNA, Transfer, Suppressor,Transfer RNA, Suppressor,RNA, Suppressor Transfer

Related Publications

C E Holmes, and B J Carter, and S M Hecht
September 1985, Biochemistry,
C E Holmes, and B J Carter, and S M Hecht
January 1986, Nucleic acids symposium series,
C E Holmes, and B J Carter, and S M Hecht
January 1985, Journal of natural products,
C E Holmes, and B J Carter, and S M Hecht
August 1994, Biochemistry,
C E Holmes, and B J Carter, and S M Hecht
November 1986, Federation proceedings,
C E Holmes, and B J Carter, and S M Hecht
October 1983, The Journal of biological chemistry,
C E Holmes, and B J Carter, and S M Hecht
October 1994, The Journal of biological chemistry,
C E Holmes, and B J Carter, and S M Hecht
December 1986, The Journal of biological chemistry,
C E Holmes, and B J Carter, and S M Hecht
November 1987, The Journal of biological chemistry,
C E Holmes, and B J Carter, and S M Hecht
August 1981, The Journal of biological chemistry,
Copied contents to your clipboard!