Human cDNA mapping using a high-resolution R-banding technique and fluorescence in situ hybridization. 1995

J R Korenberg, and X N Chen
Ahmanson Department of Pediatrics, Cedars-Sinai Medical Center, University of California, Los Angeles 90048, USA.

High-resolution fluorescence in situ hybridization (FISH) is now an essential element in both human gene mapping and clinical cytogenetics. To facilitate its application, a series of techniques have been developed using FISH to map DNA probes in the size range of 1-1,000 kb directly on R-banded human chromosomes. Distinctive reverse (R) banding is achieved by staining with chromomycin A3 and distamycin A following in situ hybridization. The use of such counterstains enables simultaneous viewing of both the fluorescent R-bands and in situ hybridization signals by either standard photomicroscopy or an automated image-acquisition system. This method is rapid and reproducibly reveals bands at the 350-700 stage. Further, specific methods for chromosome preparation, hybridization, and signal production have been developed and applied in combination with R-banding. These methods are used for precise chromosomal localization of DNA sequences in sizes ranging from that of cDNA (> 1 kb) through bacterial artificial chromosomes (100-150 kb) to yeast artificial chromosomes (> or = 1 Mb). These techniques provide high-resolution methods for rapid mapping of human genes, expanding the applications of FISH techniques in basic research and clinical analysis.

UI MeSH Term Description Entries
D007621 Karyotyping Mapping of the KARYOTYPE of a cell. Karyotype Analysis Methods,Analysis Method, Karyotype,Analysis Methods, Karyotype,Karyotype Analysis Method,Karyotypings,Method, Karyotype Analysis,Methods, Karyotype Analysis
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D002871 Chromosome Banding Staining of bands, or chromosome segments, allowing the precise identification of individual chromosomes or parts of chromosomes. Applications include the determination of chromosome rearrangements in malformation syndromes and cancer, the chemistry of chromosome segments, chromosome changes during evolution, and, in conjunction with cell hybridization studies, chromosome mapping. Banding, Chromosome,Bandings, Chromosome,Chromosome Bandings
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D003360 Cosmids Plasmids containing at least one cos (cohesive-end site) of PHAGE LAMBDA. They are used as cloning vehicles. Cosmid
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D017404 In Situ Hybridization, Fluorescence A type of IN SITU HYBRIDIZATION in which target sequences are stained with fluorescent dye so their location and size can be determined using fluorescence microscopy. This staining is sufficiently distinct that the hybridization signal can be seen both in metaphase spreads and in interphase nuclei. FISH Technique,Fluorescent in Situ Hybridization,Hybridization in Situ, Fluorescence,FISH Technic,Hybridization in Situ, Fluorescent,In Situ Hybridization, Fluorescent,FISH Technics,FISH Techniques,Technic, FISH,Technics, FISH,Technique, FISH,Techniques, FISH
D018076 DNA, Complementary Single-stranded complementary DNA synthesized from an RNA template by the action of RNA-dependent DNA polymerase. cDNA (i.e., complementary DNA, not circular DNA, not C-DNA) is used in a variety of molecular cloning experiments as well as serving as a specific hybridization probe. Complementary DNA,cDNA,cDNA Probes,Probes, cDNA
D018244 Chromosomes, Artificial, Yeast Chromosomes in which fragments of exogenous DNA ranging in length up to several hundred kilobase pairs have been cloned into yeast through ligation to vector sequences. These artificial chromosomes are used extensively in molecular biology for the construction of comprehensive genomic libraries of higher organisms. Artificial Chromosomes, Yeast,Yeast Artificial Chromosomes,Chromosomes, Yeast Artificial,YAC (Chromosome),YACs (Chromosomes),Artificial Chromosome, Yeast,Chromosome, Yeast Artificial,Yeast Artificial Chromosome

Related Publications

J R Korenberg, and X N Chen
February 1993, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
J R Korenberg, and X N Chen
April 1996, Annals of medicine,
J R Korenberg, and X N Chen
January 1994, Cytogenetics and cell genetics,
Copied contents to your clipboard!