The mechanism of Escherichia coli tryptophan indole-lyase: substituent effects on steady-state and pre-steady-state kinetic parameters for aryl-substituted tryptophan derivatives. 1995

M Lee, and R S Phillips
Biotechnology Division, Doosan Research Institute, S. Korea.

We have examined the reaction of Escherichia coli tryptophan indole-lyase with fluoro, chloro, methyl and hydroxytryptophans using steady-state kinetics, rapid-scanning and single wavelength stopped-flow spectrophotometry, and rapid chemical quench methods. All of the 16 tryptophan derivatives examined are substrates for alpha, beta-elimination catalyzed by tryptophan indole-lyase. The steady-state kinetic parameter, kcat/Km, did not show a consistent trend with the steric bulk of the substituent, but Km increased for larger substituents. Rapid-scanning stopped-flow spectra show that all tryptophan analogues undergo covalent reaction with the pyridoxal-5'-phosphate cofactor to give equilibrating mixtures of external aldimine and quinonoid intermediates, but the relative amounts of each intermediate are strongly dependent on the nature and position of the substituent. The dissociation constants for external aldimine formation, Kd, obtained from single-wavelength stopped-flow experiments decreased for most substituted tryptophans, which suggests that part of the binding energy is derived from hydrophobic interactions between the enzyme and the indole ring of tryptophan. In contrast, the rate constants of quinonoid intermediate formation and reprotonation and of indole elimination were quite variable, depending on the position and the nature of the substituent. Overall, 6-substituted tryptophans have the most consistent reactivity, which indicates that there may be space in the enzyme active site near the 6-position. There is a good linear correlation between log (kcat/Km) and log (kf/Kd) (apparent second order rate constant for quinonoid intermediate formation), with a slope of 0.66. This suggests that quinonoid intermediate formation contributes only about 66% of the activation energy for the reaction, and thus a later step in the reaction must be partially rate-limiting. Rapid chemical quench experiments demonstrate a 'burst' of indole in the reaction of L-tryptophan under single turnover conditions, confirming that a step subsequent to the elimination is partially rate-determining. In contrast, 5-methyl-L-tryptophan does not exhibit a significant 'burst', suggesting that 5-methylindole elimination is nearly completely rate-determining. These results support the proposed mechanism and demonstrate that there are significant effects of aryl substituents on the distribution of covalent intermediates and on the rate-determining step in the alpha, beta-elimination reaction catalyzed by E. coli tryptophan indole-lyase.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D013053 Spectrophotometry The art or process of comparing photometrically the relative intensities of the light in different parts of the spectrum.
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities
D014364 Tryptophan An essential amino acid that is necessary for normal growth in infants and for NITROGEN balance in adults. It is a precursor of INDOLE ALKALOIDS in plants. It is a precursor of SEROTONIN (hence its use as an antidepressant and sleep aid). It can be a precursor to NIACIN, albeit inefficiently, in mammals. Ardeydorm,Ardeytropin,L-Tryptophan,L-Tryptophan-ratiopharm,Levotryptophan,Lyphan,Naturruhe,Optimax,PMS-Tryptophan,Trofan,Tryptacin,Tryptan,Tryptophan Metabolism Alterations,ratio-Tryptophan,L Tryptophan,L Tryptophan ratiopharm,PMS Tryptophan,ratio Tryptophan
D014368 Tryptophanase An enzyme that catalyzes the conversion of L-tryptophan and water to indole, pyruvate, and ammonia. It is a pyridoxal-phosphate protein, requiring K+. It also catalyzes 2,3-elimination and beta-replacement reactions of some indole-substituted tryptophan analogs of L-cysteine, L-serine, and other 3-substituted amino acids. (From Enzyme Nomenclature, 1992) EC 4.1.99.1. Tryptophan Indole-Lyase,Indole-Lyase, Tryptophan,Tryptophan Indole Lyase

Related Publications

M Lee, and R S Phillips
October 2014, Archives of biochemistry and biophysics,
M Lee, and R S Phillips
February 1978, Biochimica et biophysica acta,
M Lee, and R S Phillips
May 1977, Archives of biochemistry and biophysics,
Copied contents to your clipboard!