Coordination of selenium to molybdenum in formate dehydrogenase H from Escherichia coli. 1994

V N Gladyshev, and S V Khangulov, and M J Axley, and T C Stadtman
Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892.

Formate dehydrogenase H from Escherichia coli contains multiple redox centers, which include a molybdopterin cofactor, an iron-sulfur center, and a selenocysteine residue (SeCys-140 in the polypeptide chain) that is essential for catalytic activity. Here we show that addition of formate to the native enzyme induces a signal typical of Mo(V) species. This signal is detected by electron paramagnetic resonance (EPR) spectroscopy. Substitution of 77Se for natural isotope abundance Se leads to transformation of this signal, indicating a direct coordination of Se with Mo. Mutant enzyme with cysteine substituted at position 140 for the selenocysteine residue has decreased catalytic activity and exhibits a different EPR signal. Since determination of the Se content of wild-type enzyme indicates approximately 1 gram atom per mol, we conclude that it is the Se atom of the SeCys-140 residue in the protein that is coordinated directly with Mo. The amino acid sequence flanking the selenocysteine residue in formate dehydrogenase H is similar to a conserved sequence found in several other prokaryotic molybdopterin-dependent enzymes. In most of these other enzymes a cysteine residue, or in a few cases a serine or a selenocysteine residue, occurs in the position corresponding to SeCys-140 of formate dehydrogenase H. By analogy with formate dehydrogenase H in these other enzymes, at least one of the ligands to Mo should be provided by an amino acid residue of the protein. This ligand could be the Se of a selenocysteine residue, sulfur of a cysteine residue, or, in the case of a serine residue, oxygen.

UI MeSH Term Description Entries
D007553 Isotope Labeling Techniques for labeling a substance with a stable or radioactive isotope. It is not used for articles involving labeled substances unless the methods of labeling are substantively discussed. Tracers that may be labeled include chemical substances, cells, or microorganisms. Isotope Labeling, Stable,Isotope-Coded Affinity Tagging,Isotopically-Coded Affinity Tagging,Affinity Tagging, Isotope-Coded,Affinity Tagging, Isotopically-Coded,Isotope Coded Affinity Tagging,Labeling, Isotope,Labeling, Stable Isotope,Stable Isotope Labeling,Tagging, Isotope-Coded Affinity,Tagging, Isotopically-Coded Affinity
D008024 Ligands A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed) Ligand
D008667 Metalloproteins Proteins that have one or more tightly bound metal ions forming part of their structure. (Dorland, 28th ed) Metalloprotein
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D008982 Molybdenum A metallic element with the atomic symbol Mo, atomic number 42, and atomic weight 95.95. It is an essential trace element, being a component of the enzymes xanthine oxidase, aldehyde oxidase, and nitrate reductase. Molybdenum-98,Molybdenum 98
D009097 Multienzyme Complexes Systems of enzymes which function sequentially by catalyzing consecutive reactions linked by common metabolic intermediates. They may involve simply a transfer of water molecules or hydrogen atoms and may be associated with large supramolecular structures such as MITOCHONDRIA or RIBOSOMES. Complexes, Multienzyme
D003545 Cysteine A thiol-containing non-essential amino acid that is oxidized to form CYSTINE. Cysteine Hydrochloride,Half-Cystine,L-Cysteine,Zinc Cysteinate,Half Cystine,L Cysteine
D004578 Electron Spin Resonance Spectroscopy A technique applicable to the wide variety of substances which exhibit paramagnetism because of the magnetic moments of unpaired electrons. The spectra are useful for detection and identification, for determination of electron structure, for study of interactions between molecules, and for measurement of nuclear spins and moments. (From McGraw-Hill Encyclopedia of Science and Technology, 7th edition) Electron nuclear double resonance (ENDOR) spectroscopy is a variant of the technique which can give enhanced resolution. Electron spin resonance analysis can now be used in vivo, including imaging applications such as MAGNETIC RESONANCE IMAGING. ENDOR,Electron Nuclear Double Resonance,Electron Paramagnetic Resonance,Paramagnetic Resonance,Electron Spin Resonance,Paramagnetic Resonance, Electron,Resonance, Electron Paramagnetic,Resonance, Electron Spin,Resonance, Paramagnetic
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005560 Formate Dehydrogenases Flavoproteins that catalyze reversibly the reduction of carbon dioxide to formate. Many compounds can act as acceptors, but the only physiologically active acceptor is NAD. The enzymes are active in the fermentation of sugars and other compounds to carbon dioxide and are the key enzymes in obtaining energy when bacteria are grown on formate as the main carbon source. They have been purified from bovine blood. EC 1.2.1.2. Formate Dehydrogenase,Formate Hydrogenlyases,NAD-Formate Dehydrogenase,Dehydrogenase, Formate,Dehydrogenase, NAD-Formate,Dehydrogenases, Formate,Hydrogenlyases, Formate,NAD Formate Dehydrogenase

Related Publications

V N Gladyshev, and S V Khangulov, and M J Axley, and T C Stadtman
January 1982, Methods in enzymology,
V N Gladyshev, and S V Khangulov, and M J Axley, and T C Stadtman
December 1994, Applied and environmental microbiology,
V N Gladyshev, and S V Khangulov, and M J Axley, and T C Stadtman
October 1990, The Journal of biological chemistry,
V N Gladyshev, and S V Khangulov, and M J Axley, and T C Stadtman
July 1991, The Journal of biological chemistry,
V N Gladyshev, and S V Khangulov, and M J Axley, and T C Stadtman
March 1981, Journal of bacteriology,
V N Gladyshev, and S V Khangulov, and M J Axley, and T C Stadtman
October 1991, Proceedings of the National Academy of Sciences of the United States of America,
V N Gladyshev, and S V Khangulov, and M J Axley, and T C Stadtman
April 2008, Journal of biochemistry,
V N Gladyshev, and S V Khangulov, and M J Axley, and T C Stadtman
January 1972, Revista latinoamericana de microbiologia,
V N Gladyshev, and S V Khangulov, and M J Axley, and T C Stadtman
June 1972, Journal of bacteriology,
V N Gladyshev, and S V Khangulov, and M J Axley, and T C Stadtman
May 2021, Analytical sciences : the international journal of the Japan Society for Analytical Chemistry,
Copied contents to your clipboard!