Effects of input pressure on in vitro turtle heart during anoxia and acidosis: a 31P-NMR study. 1995

D C Jackson, and H Shi, and J H Singer, and P H Hamm, and R G Lawler
Department of Physiology, Brown University, Providence, Rhode Island 02912.

In vitro working hearts of the turtle, Chrysemys picta bellii, paced at 30 beats/min, were studied over a range of input pressures in the following sequence of perfusion conditions: control normoxia, control anoxia, lactacidotic normoxia, and lactacidotic anoxia. Two such series of experiments were performed. In series 1 (n = 12), ventricular pressure (PV) and cardiac output were measured, and power output and dPV/dt were calculated. In series 2 (n = 5), intracellular phosphorus metabolites and intracellular pH (pHi) were also measured using 31P-nuclear magnetic resonance (31P-NMR) spectroscopy. In series 1 all mechanical variables increased with input pressure in generally similar fashion, except during anoxic acidosis, during which mechanical performance was depressed and was increased less or not at all by input pressure. Creatine phosphate (CP) and pHi fell significantly in anoxia and anoxic acidosis, but neither these variables, ATP, CP/ATP, nor, presumably, ADP changed as a function of input pressure with any perfusate despite often large increments in mechanical output. We conclude that anoxia and acidosis act synergistically to depress cardiac function in turtle hearts. Also, the insensitivity of NMR variables to changes in input pressure and cardiodynamics suggests that changes in these variables are unimportant for controlling energy turnover in this preparation.

UI MeSH Term Description Entries
D007424 Intracellular Fluid The fluid inside CELLS. Fluid, Intracellular,Fluids, Intracellular,Intracellular Fluids
D008297 Male Males
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D010477 Perfusion Treatment process involving the injection of fluid into an organ or tissue. Perfusions
D010725 Phosphocreatine An endogenous substance found mainly in skeletal muscle of vertebrates. It has been tried in the treatment of cardiac disorders and has been added to cardioplegic solutions. (Reynolds JEF(Ed): Martindale: The Extra Pharmacopoeia (electronic version). Micromedex, Inc, Englewood, CO, 1996) Creatine Phosphate,Neoton,Phosphocreatine, Disodium Salt,Phosphorylcreatine,Disodium Salt Phosphocreatine,Phosphate, Creatine
D010758 Phosphorus A non-metal element that has the atomic symbol P, atomic number 15, and atomic weight 31. It is an essential element that takes part in a broad variety of biochemical reactions. Black Phosphorus,Phosphorus-31,Red Phosphorus,White Phosphorus,Yellow Phosphorus,Phosphorus 31,Phosphorus, Black,Phosphorus, Red,Phosphorus, White,Phosphorus, Yellow
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D002302 Cardiac Output The volume of BLOOD passing through the HEART per unit of time. It is usually expressed as liters (volume) per minute so as not to be confused with STROKE VOLUME (volume per beat). Cardiac Outputs,Output, Cardiac,Outputs, Cardiac
D004734 Energy Metabolism The chemical reactions involved in the production and utilization of various forms of energy in cells. Bioenergetics,Energy Expenditure,Bioenergetic,Energy Expenditures,Energy Metabolisms,Expenditure, Energy,Expenditures, Energy,Metabolism, Energy,Metabolisms, Energy

Related Publications

D C Jackson, and H Shi, and J H Singer, and P H Hamm, and R G Lawler
September 1990, The American journal of physiology,
D C Jackson, and H Shi, and J H Singer, and P H Hamm, and R G Lawler
June 1991, The American journal of physiology,
D C Jackson, and H Shi, and J H Singer, and P H Hamm, and R G Lawler
September 1992, The American journal of physiology,
D C Jackson, and H Shi, and J H Singer, and P H Hamm, and R G Lawler
February 1982, Biochimica et biophysica acta,
D C Jackson, and H Shi, and J H Singer, and P H Hamm, and R G Lawler
August 1981, Biochimica et biophysica acta,
D C Jackson, and H Shi, and J H Singer, and P H Hamm, and R G Lawler
December 1984, Biochemistry,
D C Jackson, and H Shi, and J H Singer, and P H Hamm, and R G Lawler
December 1997, Comparative biochemistry and physiology. Part A, Physiology,
D C Jackson, and H Shi, and J H Singer, and P H Hamm, and R G Lawler
April 1989, The American journal of physiology,
D C Jackson, and H Shi, and J H Singer, and P H Hamm, and R G Lawler
February 1996, Aviation, space, and environmental medicine,
D C Jackson, and H Shi, and J H Singer, and P H Hamm, and R G Lawler
August 1983, FEBS letters,
Copied contents to your clipboard!