Enzymatic phosphorylation and pyrophosphorylation of 2',3'-dideoxyadenosine-5'-monophosphate, a key metabolite in the pathway for activation of the anti-HIV (human immunodeficiency virus) agent 2',3'-dideoxyinosine. 1994

J F Navé, and A Eschbach, and D Wolff-Kugel, and S Halazy, and J Balzarini
Marion Merrell Dow Research Institute, Strasbourg, France.

2',3'-Dideoxyadenosine-5'-monophosphate (ddAMP) is a key intermediate in the metabolic pathway involved in the activation of the anti-retroviral agent 2',3'-dideoxyinosine (ddI) to 2',3'-dideoxyadenosine-5'-triphosphate (ddATP). The potential phosphorylation of ddAMP by adenylate kinase (myokinase) and pyrophosphorylation by the reverse reaction of 5-phosphoribosyl-1-pyrophosphate (PRPP) synthetase were investigated. Using ATP as phosphate donor, ddAMP was phosphorylated by adenylate kinase with an efficiency of 8.8% of that for AMP, as estimated from the Vmax/Km ratios. In the presence of PRPP, Escherichia coli and rat PRPP synthetases catalysed the pyrophosphorylation of ddAMP with efficiencies of 52 and 35% of that determined for AMP, respectively. Two carbocyclic phosphonate analogues of ddAMP were not substrates of adenylate kinase. Yet, they were pyrophosphorylated by both PRPP synthetases, albeit less efficiently than ddAMP. In vivo, the usual function of PRPP synthetase is to synthesize PRPP from ribose-5-phosphate and ATP. In the forward reaction ddATP proved to be a substrate as efficient as ATP for rat PRPP synthetase. ddATP was also studied as a potential phosphate donor in the reaction catalysed by adenylate kinase with AMP as phosphate acceptor and found to be as efficient as ATP. The relevance of these in vitro results to the in vivo situation is discussed.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D003838 Deoxyadenine Nucleotides Adenine nucleotides which contain deoxyribose as the sugar moiety. Deoxyadenosine Phosphates,Nucleotides, Deoxyadenine,Phosphates, Deoxyadenosine
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D006678 HIV Human immunodeficiency virus. A non-taxonomic and historical term referring to any of two species, specifically HIV-1 and/or HIV-2. Prior to 1986, this was called human T-lymphotropic virus type III/lymphadenopathy-associated virus (HTLV-III/LAV). From 1986-1990, it was an official species called HIV. Since 1991, HIV was no longer considered an official species name; the two species were designated HIV-1 and HIV-2. AIDS Virus,HTLV-III,Human Immunodeficiency Viruses,Human T-Cell Lymphotropic Virus Type III,Human T-Lymphotropic Virus Type III,LAV-HTLV-III,Lymphadenopathy-Associated Virus,Acquired Immune Deficiency Syndrome Virus,Acquired Immunodeficiency Syndrome Virus,Human Immunodeficiency Virus,Human T Cell Lymphotropic Virus Type III,Human T Lymphotropic Virus Type III,Human T-Cell Leukemia Virus Type III,Immunodeficiency Virus, Human,Immunodeficiency Viruses, Human,Virus, Human Immunodeficiency,Viruses, Human Immunodeficiency,AIDS Viruses,Human T Cell Leukemia Virus Type III,Lymphadenopathy Associated Virus,Lymphadenopathy-Associated Viruses,Virus, AIDS,Virus, Lymphadenopathy-Associated,Viruses, AIDS,Viruses, Lymphadenopathy-Associated
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000263 Adenylate Kinase An enzyme that catalyzes the phosphorylation of AMP to ADP in the presence of ATP or inorganic triphosphate. EC 2.7.4.3. Myokinase,AMP Kinase,ATP-AMP Phosphotransferase,ATP-AMP Transphosphorylase,Adenylokinase,ATP AMP Phosphotransferase,ATP AMP Transphosphorylase,Kinase, AMP,Kinase, Adenylate,Phosphotransferase, ATP-AMP,Transphosphorylase, ATP-AMP
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001711 Biotransformation The chemical alteration of an exogenous substance by or in a biological system. The alteration may inactivate the compound or it may result in the production of an active metabolite of an inactive parent compound. The alterations may be divided into METABOLIC DETOXICATION, PHASE I and METABOLIC DETOXICATION, PHASE II.
D012268 Ribose-Phosphate Pyrophosphokinase An enzyme that catalyzes the formation of phosphoribosyl pyrophosphate from ATP and ribose-5-phosphate. EC 2.7.6.1. PRPP Synthetase,Phosphoribosyl Pyrophosphate Synthetase,5-Phospho-alpha-D-Ribose 1-Diphosphate Synthetase,PRibPP Synthetase,Ribosephosphate Pyrophosphokinase,1-Diphosphate Synthetase, 5-Phospho-alpha-D-Ribose,5 Phospho alpha D Ribose 1 Diphosphate Synthetase,Pyrophosphate Synthetase, Phosphoribosyl,Pyrophosphokinase, Ribose-Phosphate,Pyrophosphokinase, Ribosephosphate,Ribose Phosphate Pyrophosphokinase,Synthetase, 5-Phospho-alpha-D-Ribose 1-Diphosphate,Synthetase, PRPP,Synthetase, Phosphoribosyl Pyrophosphate

Related Publications

J F Navé, and A Eschbach, and D Wolff-Kugel, and S Halazy, and J Balzarini
July 1991, Molecular pharmacology,
J F Navé, and A Eschbach, and D Wolff-Kugel, and S Halazy, and J Balzarini
January 2000, Nucleosides, nucleotides & nucleic acids,
J F Navé, and A Eschbach, and D Wolff-Kugel, and S Halazy, and J Balzarini
May 1990, Clinical pharmacology and therapeutics,
J F Navé, and A Eschbach, and D Wolff-Kugel, and S Halazy, and J Balzarini
May 1989, Biochemical pharmacology,
J F Navé, and A Eschbach, and D Wolff-Kugel, and S Halazy, and J Balzarini
January 1993, Drug metabolism and disposition: the biological fate of chemicals,
J F Navé, and A Eschbach, and D Wolff-Kugel, and S Halazy, and J Balzarini
January 1991, Cancer chemotherapy and pharmacology,
J F Navé, and A Eschbach, and D Wolff-Kugel, and S Halazy, and J Balzarini
July 1989, Investigational new drugs,
J F Navé, and A Eschbach, and D Wolff-Kugel, and S Halazy, and J Balzarini
April 1988, The Journal of biological chemistry,
Copied contents to your clipboard!