Voltage-dependent sodium and potassium currents in cultured trout astrocytes. 1994

G Glassmeier, and G Jeserich, and T Krüppel
Abt. Zoophysiologie, Universität Osnabrück, Germany.

Voltage-gated ionic currents were recorded from cultured trout astrocytes with the whole-cell variation of the patch-clamp technique. In a subpopulation of astrocytes depolarizations above -40 mV activated a fast transient inward current that was identified as a sodium current by ion substitution experiments, its current reversal potential, and its TTX-sensitivity. Regarding threshold of activation, peak current voltage, and amplitude this current closely resembled those previously described for mammalian astrocytes. Voltage-dependence of inactivation and kinetics, however, markedly differed from the "glial-like" sodium current occurring in mammalian hippocampal or optic nerve astrocytes, since the sodium current of trout astrocytes exhibited a faster time course of activation and decay and a more depolarized steady-state inactivation curve with midpoints close to -60 mV. During a period of 2 weeks in culture the biophysical properties of the sodium current did not change significantly, albeit a continuous decrease in current density was observed. At depolarizing voltage steps positive to -40 mV, additionally voltage-gated potassium outward currents were evoked, which could be separated into a steady-state current with delayed rectifier properties and an inactivating component resembling the A-type current. Moreover, in a subpopulation of astrocytes an inward potassium current was elicited at hyperpolarizing potentials, which exhibited biophysical features consistent with the potassium inward rectifier of mammalian astrocytes.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001253 Astrocytes A class of large neuroglial (macroglial) cells in the central nervous system - the largest and most numerous neuroglial cells in the brain and spinal cord. Astrocytes (from "star" cells) are irregularly shaped with many long processes, including those with "end feet" which form the glial (limiting) membrane and directly and indirectly contribute to the BLOOD-BRAIN BARRIER. They regulate the extracellular ionic and chemical environment, and "reactive astrocytes" (along with MICROGLIA) respond to injury. Astroglia,Astroglia Cells,Astroglial Cells,Astrocyte,Astroglia Cell,Astroglial Cell,Astroglias,Cell, Astroglia,Cell, Astroglial
D015221 Potassium Channels Cell membrane glycoproteins that are selectively permeable to potassium ions. At least eight major groups of K channels exist and they are made up of dozens of different subunits. Ion Channels, Potassium,Ion Channel, Potassium,Potassium Channel,Potassium Ion Channels,Channel, Potassium,Channel, Potassium Ion,Channels, Potassium,Channels, Potassium Ion,Potassium Ion Channel
D015222 Sodium Channels Ion channels that specifically allow the passage of SODIUM ions. A variety of specific sodium channel subtypes are involved in serving specialized functions such as neuronal signaling, CARDIAC MUSCLE contraction, and KIDNEY function. Ion Channels, Sodium,Ion Channel, Sodium,Sodium Channel,Sodium Ion Channels,Channel, Sodium,Channel, Sodium Ion,Channels, Sodium,Channels, Sodium Ion,Sodium Ion Channel
D015640 Ion Channel Gating The opening and closing of ion channels due to a stimulus. The stimulus can be a change in membrane potential (voltage-gated), drugs or chemical transmitters (ligand-gated), or a mechanical deformation. Gating is thought to involve conformational changes of the ion channel which alters selective permeability. Gating, Ion Channel,Gatings, Ion Channel,Ion Channel Gatings

Related Publications

G Glassmeier, and G Jeserich, and T Krüppel
January 1985, Nature,
G Glassmeier, and G Jeserich, and T Krüppel
October 1990, Bioscience reports,
G Glassmeier, and G Jeserich, and T Krüppel
March 1993, Biochemical and biophysical research communications,
G Glassmeier, and G Jeserich, and T Krüppel
December 2004, Glia,
G Glassmeier, and G Jeserich, and T Krüppel
February 1985, Proceedings of the National Academy of Sciences of the United States of America,
G Glassmeier, and G Jeserich, and T Krüppel
February 1985, Proceedings of the National Academy of Sciences of the United States of America,
G Glassmeier, and G Jeserich, and T Krüppel
August 1998, Neuroscience,
G Glassmeier, and G Jeserich, and T Krüppel
September 1985, Proceedings of the Royal Society of London. Series B, Biological sciences,
G Glassmeier, and G Jeserich, and T Krüppel
June 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience,
G Glassmeier, and G Jeserich, and T Krüppel
March 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Copied contents to your clipboard!