Nucleoside influx and efflux in guinea-pig ventricular myocytes. Inhibition by analogues of lidoflazine. 1994

A R Conant, and S M Jarvis
Research School of Biosciences, University of Kent, Canterbury, U.K.

Adenosine influx and formycin B influx and efflux were characterized in guinea-pig ventricular myocytes at 22 degrees. Transport by both modes was saturable and inhibited by nitrobenzylthioinosine (NBMPR), indicating the presence of an equilibrative NBMPR-sensitive nucleoside transporter in the cardiomyocytes. The kinetic constants for influx and efflux of formycin B, a non-metabolized nucleoside, were similar, suggesting that the nucleoside transporter exhibits symmetrical kinetics (apparent Km 490 +/- 160 and 700 +/- 140 microM; Vmax 6.5 +/- 1.7 and 3.5 +/- 0.3 nmol/10(6) cells per min for influx and efflux, respectively). No evidence was found of either NBMPR-insensitive equilibrative nucleoside transport or sodium-dependent concentrative nucleoside transport. Inhibition of adenosine influx (apparent Km100 +/- 33 microM), by lidoflazine and the analogues mioflazine, soluflazine and R73-335, gave average Ki values of 730, 100, 64 and 2.9 nM, respectively. These compounds also inhibited formycin B efflux with a similar potency to that of adenosine influx. NBMPR-sensitive nucleoside transport was associated with high affinity binding of NBMPR (apparent Kd approximately 1 nM; 9.6 x 10(5) sites/cell). Specific binding of NBMPR was also inhibited by lidoflazine and its analogues. Mioflazine and soluflazine were 20-30-fold more potent at inhibiting NBMPR-sensitive nucleoside influx in guinea-pig erythrocytes than ventricular myocytes, indicating that the potency of some of the compounds studied is tissue dependent.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008013 Lidoflazine Coronary vasodilator with some antiarrhythmic action. Clinium,Ordiflazine
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D005573 Formycins Pyrazolopyrimidine ribonucleosides isolated from Nocardia interforma. They are antineoplastic antibiotics with cytostatic properties.
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D006352 Heart Ventricles The lower right and left chambers of the heart. The right ventricle pumps venous BLOOD into the LUNGS and the left ventricle pumps oxygenated blood into the systemic arterial circulation. Cardiac Ventricle,Cardiac Ventricles,Heart Ventricle,Left Ventricle,Right Ventricle,Left Ventricles,Right Ventricles,Ventricle, Cardiac,Ventricle, Heart,Ventricle, Left,Ventricle, Right,Ventricles, Cardiac,Ventricles, Heart,Ventricles, Left,Ventricles, Right
D000241 Adenosine A nucleoside that is composed of ADENINE and D-RIBOSE. Adenosine or adenosine derivatives play many important biological roles in addition to being components of DNA and RNA. Adenosine itself is a neurotransmitter. Adenocard,Adenoscan
D000345 Affinity Labels Analogs of those substrates or compounds which bind naturally at the active sites of proteins, enzymes, antibodies, steroids, or physiological receptors. These analogs form a stable covalent bond at the binding site, thereby acting as inhibitors of the proteins or steroids. Affinity Labeling Reagents,Labeling Reagents, Affinity,Labels, Affinity,Reagents, Affinity Labeling
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

A R Conant, and S M Jarvis
August 1996, Circulation research,
A R Conant, and S M Jarvis
July 1998, General pharmacology,
A R Conant, and S M Jarvis
July 1992, Journal of molecular and cellular cardiology,
A R Conant, and S M Jarvis
January 2004, Journal of biomedical science,
A R Conant, and S M Jarvis
July 1997, Experimental physiology,
A R Conant, and S M Jarvis
December 1989, Naunyn-Schmiedeberg's archives of pharmacology,
Copied contents to your clipboard!