Identification of important residues within the putative nucleoside binding site of HSV-1 thymidine kinase by random sequence selection: analysis of selected mutants in vitro. 1993

M E Black, and L A Loeb
Joseph Gottstein Memorial Cancer Research Laboratory, Department of Pathology, School of Medicine, University of Washington, Seattle 98195.

Random sequence mutagenesis in conjunction with genetic complementation was used to map the function of amino acid residues within the putative nucleoside binding site of the herpes simplex virus type 1 (HSV-1) thymidine kinase (TK). Six codons of the putative nucleoside binding site of the HSV-1 tk were substituted by a duplex of extended oligonucleotides containing 20% random sequences. Approximately 260 mutants were screened for the ability to genetically complement a TK-deficient Escherichia coli. Of those screened, 32% conferred TK activity. Approximately 60% of the TK positive clones contained single amino acid changes, 23% contained double changes, and 13.4% encoded the wild-type TK amino acid sequence. A small percentage of clones, 2.4% and 1.2%, contained triple or quadruple alterations, respectively. Three residues (D162, H163, and R164) appeared to be highly conserved especially with regard to the type of residues able to substitute. Secondary screening results indicated that several of the mutants had higher affinities for acyclovir and/or 3'-azido-3'-deoxythymidine than thymidine in complementation assays. In addition, a number of clones were unable to form colonies on selection medium at elevated temperatures (42 degrees C). Eight selected mutants were subcloned into an in vitro transcription vector and the derived transcripts used to program a rabbit reticulocyte lysate cell-free translation system. Biologically active translation products were then analyzed in vitro for thymidine kinase activity, for thermal stability, and for the ability to phosphorylate selected nucleoside analogues. Two of the eight mutants had an elevated thymidine kinase activity, two were significantly thermolabile, and three exhibited enhanced efficiency in phosphorylation of nucleoside analogues.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009705 Nucleosides Purine or pyrimidine bases attached to a ribose or deoxyribose. (From King & Stansfield, A Dictionary of Genetics, 4th ed) Nucleoside,Nucleoside Analog,Nucleoside Analogs,Analog, Nucleoside,Analogs, Nucleoside
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D004795 Enzyme Stability The extent to which an enzyme retains its structural conformation or its activity when subjected to storage, isolation, and purification or various other physical or chemical manipulations, including proteolytic enzymes and heat. Enzyme Stabilities,Stabilities, Enzyme,Stability, Enzyme
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities

Related Publications

M E Black, and L A Loeb
May 1993, Proceedings of the National Academy of Sciences of the United States of America,
M E Black, and L A Loeb
August 1999, Gene therapy,
Copied contents to your clipboard!