Cloning, sequencing and expression of the uvrA gene from an extremely thermophilic bacterium, Thermus thermophilus HB8. 1996

N Yamamoto, and R Kato, and S Kuramitsu
Department of Biology, Faculty of Science, Osaka University, Japan.

One of the most important DNA repair systems is the nucleotide (nt) excision repair system. The uvr A gene, which plays an essential role in the prokaryotic excision repair system, was cloned from an extremely thermophilic eubacterium, Thermus thermophilus (Tt) HB8, and its nt sequence was determined. In the amino acid (aa) sequence of Tt UvrA, a characteristic duplicated structure, two nt-binding consensus sequences (Walker's A-type motif) and two zinc finger DNA-binding motifs were found. The aa sequence showed 73% homology with that of Escherichia coli (Ec). These features suggest that Tt has the same excision repair system as Ec. Upon comparison of the Tt and Ec UvrA, some characteristic aa substitutions were found. The numbers of Arg and Pro residues were increased (from 66 to 81 and from 47 to 55, respectively), and the numbers of Asn and Met residues were decreased (from 33 to 18 and from 18 to 11, respectively) in Tt. The Tt uvr A gene was expressed in Ec under control of the lac promoter. Purified UvrA was stable up to 80 degrees C (at neutral pH) and at pH 2-11 (at 25 degrees C).

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004260 DNA Repair The removal of DNA LESIONS and/or restoration of intact DNA strands without BASE PAIR MISMATCHES, intrastrand or interstrand crosslinks, or discontinuities in the DNA sugar-phosphate backbones. DNA Damage Response
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D006358 Hot Temperature Presence of warmth or heat or a temperature notably higher than an accustomed norm. Heat,Hot Temperatures,Temperature, Hot,Temperatures, Hot
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000251 Adenosine Triphosphatases A group of enzymes which catalyze the hydrolysis of ATP. The hydrolysis reaction is usually coupled with another function such as transporting Ca(2+) across a membrane. These enzymes may be dependent on Ca(2+), Mg(2+), anions, H+, or DNA. ATPases,Adenosinetriphosphatase,ATPase,ATPase, DNA-Dependent,Adenosine Triphosphatase,DNA-Dependent ATPase,DNA-Dependent Adenosinetriphosphatases,ATPase, DNA Dependent,Adenosinetriphosphatases, DNA-Dependent,DNA Dependent ATPase,DNA Dependent Adenosinetriphosphatases,Triphosphatase, Adenosine

Related Publications

N Yamamoto, and R Kato, and S Kuramitsu
December 2003, Journal of biochemistry,
N Yamamoto, and R Kato, and S Kuramitsu
December 1993, Journal of biochemistry,
N Yamamoto, and R Kato, and S Kuramitsu
January 1996, Journal of biochemistry,
N Yamamoto, and R Kato, and S Kuramitsu
March 2002, Bioscience, biotechnology, and biochemistry,
N Yamamoto, and R Kato, and S Kuramitsu
February 1996, Nucleic acids research,
N Yamamoto, and R Kato, and S Kuramitsu
January 1993, Journal of bacteriology,
N Yamamoto, and R Kato, and S Kuramitsu
September 1997, Biochimica et biophysica acta,
N Yamamoto, and R Kato, and S Kuramitsu
February 1998, Nucleic acids research,
N Yamamoto, and R Kato, and S Kuramitsu
July 2004, Microbiology (Reading, England),
Copied contents to your clipboard!