The restriction-modification system of Pasteurella haemolytica is a member of a new family of type I enzymes. 1996

S K Highlander, and O Garza
Department of Microbiology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA. sarahh@bcm.tmc.edu

Genes encoding the type I restriction-modification (R-M) system of the bovine pathogen, Pasteurella haemolytica, have been identified immediately downstream of a locus that encodes a transcriptional activator of P. haemolytica leukotoxin expression. Type I enzymes are encoded by three genes called hsdM, hsdS and hsdR, and have fallen into three groups, called Ia, Ib and Ic. HsdS provides a sequence recognition function which in concert with HsdM forms an active methyltransferase (MTase). Inclusion of the HsdR subunit in the complex creates an active restriction endonuclease (ENase) capable of cleaving unmethylated target DNA. The P. haemolytica hsdMSR genes were mapped using transposon Tn10d-Cam insertions, and bacteriophage restriction and modification assays in Escherichia coli. We determined the nucleotide sequences of hsdM, hsdS and hsdR, and observed that the deduced amino acid (aa) sequences were very similar to predicted R-M subunits in the respiratory pathogen, Haemophilus influenzae. Phylogenetic comparisons of all known Hsd aa sequences placed the P. haemolytica and H. influenzae proteins into a new group which we labeled the Type Id R-M family. Expression of the P. haemolytica R-M genes in E. coli was inefficient and is likely to be a consequence of the unusual codon usage in P. haemolytica genes.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D004251 DNA Transposable Elements Discrete segments of DNA which can excise and reintegrate to another site in the genome. Most are inactive, i.e., have not been found to exist outside the integrated state. DNA transposable elements include bacterial IS (insertion sequence) elements, Tn elements, the maize controlling elements Ac and Ds, Drosophila P, gypsy, and pogo elements, the human Tigger elements and the Tc and mariner elements which are found throughout the animal kingdom. DNA Insertion Elements,DNA Transposons,IS Elements,Insertion Sequence Elements,Tn Elements,Transposable Elements,Elements, Insertion Sequence,Sequence Elements, Insertion,DNA Insertion Element,DNA Transposable Element,DNA Transposon,Element, DNA Insertion,Element, DNA Transposable,Element, IS,Element, Insertion Sequence,Element, Tn,Element, Transposable,Elements, DNA Insertion,Elements, DNA Transposable,Elements, IS,Elements, Tn,Elements, Transposable,IS Element,Insertion Element, DNA,Insertion Elements, DNA,Insertion Sequence Element,Sequence Element, Insertion,Tn Element,Transposable Element,Transposable Element, DNA,Transposable Elements, DNA,Transposon, DNA,Transposons, DNA
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D015183 Restriction Mapping Use of restriction endonucleases to analyze and generate a physical map of genomes, genes, or other segments of DNA. Endonuclease Mapping, Restriction,Enzyme Mapping, Restriction,Site Mapping, Restriction,Analysis, Restriction Enzyme,Enzyme Analysis, Restriction,Restriction Enzyme Analysis,Analyses, Restriction Enzyme,Endonuclease Mappings, Restriction,Enzyme Analyses, Restriction,Enzyme Mappings, Restriction,Mapping, Restriction,Mapping, Restriction Endonuclease,Mapping, Restriction Enzyme,Mapping, Restriction Site,Mappings, Restriction,Mappings, Restriction Endonuclease,Mappings, Restriction Enzyme,Mappings, Restriction Site,Restriction Endonuclease Mapping,Restriction Endonuclease Mappings,Restriction Enzyme Analyses,Restriction Enzyme Mapping,Restriction Enzyme Mappings,Restriction Mappings,Restriction Site Mapping,Restriction Site Mappings,Site Mappings, Restriction
D015253 Deoxyribonucleases, Type I Site-Specific Enzyme systems containing three different subunits and requiring ATP, S-adenosylmethionine, and magnesium for endonucleolytic activity to give random double-stranded fragments with terminal 5'-phosphates. They function also as DNA-dependent ATPases and modification methylases, catalyzing the reactions of EC 2.1.1.72 and EC 2.1.1.73 with similar site-specificity. The systems recognize specific short DNA sequences and cleave at sites remote from the recognition sequence. Enzymes from different microorganisms with the same specificity are called isoschizomers. EC 3.1.21.3. DNA Restriction Enzymes, Type I,DNase, Site-Specific, Type I,Restriction Endonucleases, Type I,Type I Restriction Enzymes,DNase, Site Specific, Type I,Deoxyribonucleases, Type I, Site Specific,Deoxyribonucleases, Type I, Site-Specific,Site-Specific DNase, Type I,Type I Site Specific DNase,Type I Site Specific Deoxyribonucleases,Type I Site-Specific DNase,Type I Site-Specific Deoxyribonucleases,Deoxyribonucleases, Type I Site Specific,Site Specific DNase, Type I
D015254 DNA Modification Methylases Enzymes that are part of the restriction-modification systems. They are responsible for producing a species-characteristic methylation pattern, on either adenine or cytosine residues, in a specific short base sequence in the host cell's own DNA. This methylated sequence will occur many times in the host-cell DNA and remain intact for the lifetime of the cell. Any DNA from another species which gains entry into a living cell and lacks the characteristic methylation pattern will be recognized by the restriction endonucleases of similar specificity and destroyed by cleavage. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. DNA Modification Methyltransferases,Modification Methylases,Methylases, DNA Modification,Methylases, Modification,Methyltransferases, DNA Modification,Modification Methylases, DNA,Modification Methyltransferases, DNA
D015265 Site-Specific DNA-Methyltransferase (Adenine-Specific) An enzyme responsible for producing a species-characteristic methylation pattern on adenine residues in a specific short base sequence in the host cell DNA. The enzyme catalyzes the methylation of DNA adenine in the presence of S-adenosyl-L-methionine to form DNA containing 6-methylaminopurine and S-adenosyl-L-homocysteine. EC 2.1.1.72. DNA Modification Methylases (Adenine-Specific),DNA-Adenine Methylases,Modification Methylases (Adenine-Specific),Site-Specific Methyltransferases (Adenine-Specific),DNA Modification Methylases Adenine Specific,Modification Methylases (Adenine Specific),Site Specific Methyltransferases (Adenine Specific),DNA Adenine Methylases,Methylases, DNA-Adenine
D016978 Mannheimia haemolytica A species of gram-negative, facultatively anaerobic, rod-shaped bacteria normally commensal in the flora of CATTLE and SHEEP. But under conditions of physical or PHYSIOLOGICAL STRESS, it can cause MASTITIS in sheep and SHIPPING FEVER or ENZOOTIC CALF PNEUMONIA in cattle. Its former name was Pasteurella haemolytica. Pasteurella haemolytica,Pasteurella hemolytica

Related Publications

S K Highlander, and O Garza
June 2004, Biochemical and biophysical research communications,
S K Highlander, and O Garza
October 2004, Nucleic acids research,
S K Highlander, and O Garza
January 1987, Gene amplification and analysis,
S K Highlander, and O Garza
August 1997, Journal of molecular biology,
S K Highlander, and O Garza
December 1988, Gene,
Copied contents to your clipboard!