Changes of actin cytoskeleton during swelling and regulatory volume decrease in cultured astrocytes. 1996

J Morán, and M Sabanero, and I Meza, and H Pasantes-Morales
Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México DF.

Swelling of cultured astrocytes exposed to hyposmotic medium modified the organization of the filamentous actin (F-actin) cytoskeleton, making the actin network diffuse in the cell body but concentrated at foci corresponding to the tips of the cell projections retracted by swelling. This change was reversible, and, after 2 h, the actin cytoskeleton tended to recover, and cells regained their flat and stellate shape. Cytochalasins B and D (CB and CD, respectively), which disrupt the actin cytoskeleton, did not affect regulatory volume decrease (RVD) or the swelling-activated efflux of Cl- and inositol, although 10 microM CD increased the basal efflux of taurine. The mercurial p-chloromercuribenzenesulfonate (0.5-1 mM), known to disrupt the membrane cytoskeleton in isosmotic conditions, induced a 46, 50, and 38% release of [3H]taurine, 125I, and [3H]inositol, respectively, causing cell shrinkage and retraction of the cytoskeleton. Coincidently, the swelling-stimulated release of [3H]taurine and 125I was reduced by 60 and 30%, respectively. Results of this study do not exclude the possibility that changes in the actin cytoskeleton elicited by swelling are involved in mechanisms of RVD and only indicate that the disruption caused by cytochalasins is unrelated to that process.

UI MeSH Term Description Entries
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003571 Cytochalasin B A cytotoxic member of the CYTOCHALASINS. Phomin
D003599 Cytoskeleton The network of filaments, tubules, and interconnecting filamentous bridges which give shape, structure, and organization to the cytoplasm. Cytoplasmic Filaments,Cytoskeletal Filaments,Microtrabecular Lattice,Cytoplasmic Filament,Cytoskeletal Filament,Cytoskeletons,Filament, Cytoplasmic,Filament, Cytoskeletal,Filaments, Cytoplasmic,Filaments, Cytoskeletal,Lattice, Microtrabecular,Lattices, Microtrabecular,Microtrabecular Lattices
D000199 Actins Filamentous proteins that are the main constituent of the thin filaments of muscle fibers. The filaments (known also as filamentous or F-actin) can be dissociated into their globular subunits; each subunit is composed of a single polypeptide 375 amino acids long. This is known as globular or G-actin. In conjunction with MYOSINS, actin is responsible for the contraction and relaxation of muscle. F-Actin,G-Actin,Actin,Isoactin,N-Actin,alpha-Actin,alpha-Isoactin,beta-Actin,gamma-Actin,F Actin,G Actin,N Actin,alpha Actin,alpha Isoactin,beta Actin,gamma Actin
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001253 Astrocytes A class of large neuroglial (macroglial) cells in the central nervous system - the largest and most numerous neuroglial cells in the brain and spinal cord. Astrocytes (from "star" cells) are irregularly shaped with many long processes, including those with "end feet" which form the glial (limiting) membrane and directly and indirectly contribute to the BLOOD-BRAIN BARRIER. They regulate the extracellular ionic and chemical environment, and "reactive astrocytes" (along with MICROGLIA) respond to injury. Astroglia,Astroglia Cells,Astroglial Cells,Astrocyte,Astroglia Cell,Astroglial Cell,Astroglias,Cell, Astroglia,Cell, Astroglial
D013654 Taurine A conditionally essential nutrient, important during mammalian development. It is present in milk but is isolated mostly from ox bile and strongly conjugates bile acids. Taufon,Tauphon,Taurine Hydrochloride,Taurine Zinc Salt (2:1),Taurine, Monopotassium Salt
D015638 Cytochalasin D A fungal metabolite that blocks cytoplasmic cleavage by blocking formation of contractile microfilament structures resulting in multinucleated cell formation, reversible inhibition of cell movement, and the induction of cellular extrusion. Additional reported effects include the inhibition of actin polymerization, DNA synthesis, sperm motility, glucose transport, thyroid secretion, and growth hormone release.
D048429 Cell Size The quantity of volume or surface area of CELLS. Cell Volume,Cell Sizes,Cell Volumes,Size, Cell,Sizes, Cell,Volume, Cell,Volumes, Cell

Related Publications

J Morán, and M Sabanero, and I Meza, and H Pasantes-Morales
December 1998, Journal of neurochemistry,
J Morán, and M Sabanero, and I Meza, and H Pasantes-Morales
August 1999, Journal of neuroscience research,
J Morán, and M Sabanero, and I Meza, and H Pasantes-Morales
October 2000, Neurochemical research,
J Morán, and M Sabanero, and I Meza, and H Pasantes-Morales
January 1994, The American journal of physiology,
J Morán, and M Sabanero, and I Meza, and H Pasantes-Morales
January 2019, FASEB journal : official publication of the Federation of American Societies for Experimental Biology,
J Morán, and M Sabanero, and I Meza, and H Pasantes-Morales
July 1998, Journal of neuroscience research,
J Morán, and M Sabanero, and I Meza, and H Pasantes-Morales
January 1994, The American journal of physiology,
J Morán, and M Sabanero, and I Meza, and H Pasantes-Morales
November 1998, European journal of cell biology,
J Morán, and M Sabanero, and I Meza, and H Pasantes-Morales
June 1995, General physiology and biophysics,
J Morán, and M Sabanero, and I Meza, and H Pasantes-Morales
February 1989, The American journal of physiology,
Copied contents to your clipboard!