Selective regulation of agrin mRNA induction and alternative splicing in PC12 cells by Ras-dependent actions of nerve growth factor. 1997

M A Smith, and G R Fanger, and L T O'Connor, and P Bridle, and R A Maue
Department of Anatomy and Neurobiology, University of California at Irvine, Irvine, California 92697, USA. masmith@uci.edu

The extracellular matrix protein agrin plays an important role in the formation and maintenance of the neuromuscular junction. However, regulation of agrin gene expression and pre-mRNA splicing, important in determining the biological actions of agrin, is not well understood. To begin to identify mechanisms controlling agrin expression, quantitative polymerase chain reaction techniques were used to analyze the effect of growth factors on the expression of agrin mRNA isoforms in rat pheochromocytoma (PC12) cells. Agrin transcripts in untreated cells lacked inserts in the Y and Z sites (agriny0z0), encoding agrin isoforms with low acetylcholine receptor aggregating activity and a primarily non-neuronal tissue distribution. Transcripts encoding isoforms with high aggregating activity and neuronal tissue distribution (agriny4z8, agriny4z11, and agriny4z19) were not detected. Treatment of PC12 cells with nerve growth factor (NGF) caused a significant increase in total agrin mRNA. In contrast, exposure to epidermal growth factor had no effect. Analysis of alternative splicing of agrin mRNA revealed that NGF elicited a specific increase in agriny4 and agrinz8 mRNAs that did not occur in the presence of epidermal growth factor, insulin, dexamethasone, or retinoic acid. Analysis of PC12 sublines stably overexpressing a dominant inhibitory form of p21 Ras indicated that NGF induced changes in levels of agrin mRNA and alternative splicing required Ras activity. The results show that NGF can influence important aspects of neuronal differentiation by regulating alternative splicing. Furthermore, these data provide insight into the mechanisms governing agrin gene expression and suggest that neurotrophic factors may play a role in regulating agrin expression in vivo.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D009414 Nerve Growth Factors Factors which enhance the growth potentialities of sensory and sympathetic nerve cells. Neurite Outgrowth Factor,Neurite Outgrowth Factors,Neuronal Growth-Associated Protein,Neuronotrophic Factor,Neurotrophic Factor,Neurotrophic Factors,Neurotrophin,Neurotrophins,Growth-Associated Proteins, Neuronal,Neuronal Growth-Associated Proteins,Neuronotrophic Factors,Neurotrophic Protein,Neurotrophic Proteins,Proteins, Neuronal Growth-Associated,Factor, Neurite Outgrowth,Factor, Neuronotrophic,Factor, Neurotrophic,Factors, Nerve Growth,Factors, Neurite Outgrowth,Factors, Neuronotrophic,Factors, Neurotrophic,Growth Associated Proteins, Neuronal,Growth-Associated Protein, Neuronal,Neuronal Growth Associated Protein,Neuronal Growth Associated Proteins,Outgrowth Factor, Neurite,Outgrowth Factors, Neurite,Protein, Neuronal Growth-Associated
D011518 Proto-Oncogene Proteins Products of proto-oncogenes. Normally they do not have oncogenic or transforming properties, but are involved in the regulation or differentiation of cell growth. They often have protein kinase activity. Cellular Proto-Oncogene Proteins,c-onc Proteins,Proto Oncogene Proteins, Cellular,Proto-Oncogene Products, Cellular,Cellular Proto Oncogene Proteins,Cellular Proto-Oncogene Products,Proto Oncogene Products, Cellular,Proto Oncogene Proteins,Proto-Oncogene Proteins, Cellular,c onc Proteins
D004815 Epidermal Growth Factor A 6-kDa polypeptide growth factor initially discovered in mouse submaxillary glands. Human epidermal growth factor was originally isolated from urine based on its ability to inhibit gastric secretion and called urogastrone. Epidermal growth factor exerts a wide variety of biological effects including the promotion of proliferation and differentiation of mesenchymal and EPITHELIAL CELLS. It is synthesized as a transmembrane protein which can be cleaved to release a soluble active form. EGF,Epidermal Growth Factor-Urogastrone,Urogastrone,Human Urinary Gastric Inhibitor,beta-Urogastrone,Growth Factor, Epidermal,Growth Factor-Urogastrone, Epidermal,beta Urogastrone
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012322 RNA Precursors RNA transcripts of the DNA that are in some unfinished stage of post-transcriptional processing (RNA PROCESSING, POST-TRANSCRIPTIONAL) required for function. RNA precursors may undergo several steps of RNA SPLICING during which the phosphodiester bonds at exon-intron boundaries are cleaved and the introns are excised. Consequently a new bond is formed between the ends of the exons. Resulting mature RNAs can then be used; for example, mature mRNA (RNA, MESSENGER) is used as a template for protein production. Precursor RNA,Primary RNA Transcript,RNA, Messenger, Precursors,RNA, Ribosomal, Precursors,RNA, Small Nuclear, Precursors,RNA, Transfer, Precursors,Pre-mRNA,Pre-rRNA,Pre-snRNA,Pre-tRNA,Primary Transcript, RNA,RNA Precursor,mRNA Precursor,rRNA Precursor,snRNA Precursor,tRNA Precursor,Pre mRNA,Pre rRNA,Pre snRNA,Pre tRNA,Precursor, RNA,Precursor, mRNA,Precursor, rRNA,Precursor, snRNA,Precursor, tRNA,Precursors, RNA,RNA Primary Transcript,RNA Transcript, Primary,RNA, Precursor,Transcript, Primary RNA,Transcript, RNA Primary
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D016716 PC12 Cells A CELL LINE derived from a PHEOCHROMOCYTOMA of the rat ADRENAL MEDULLA. PC12 cells stop dividing and undergo terminal differentiation when treated with NERVE GROWTH FACTOR, making the line a useful model system for NERVE CELL differentiation. Pheochromocytoma Cell Line,Cell Line, Pheochromocytoma,Cell Lines, Pheochromocytoma,PC12 Cell,Pheochromocytoma Cell Lines
D017398 Alternative Splicing A process whereby multiple RNA transcripts are generated from a single gene. Alternative splicing involves the splicing together of other possible sets of EXONS during the processing of some, but not all, transcripts of the gene. Thus a particular exon may be connected to any one of several alternative exons to form a mature RNA. The alternative forms of mature MESSENGER RNA produce PROTEIN ISOFORMS in which one part of the isoforms is common while the other parts are different. RNA Splicing, Alternative,Splicing, Alternative,Alternate Splicing,Nested Transcripts,Alternate Splicings,Alternative RNA Splicing,Alternative RNA Splicings,Alternative Splicings,Nested Transcript,RNA Splicings, Alternative,Splicing, Alternate,Splicing, Alternative RNA,Splicings, Alternate,Splicings, Alternative,Splicings, Alternative RNA,Transcript, Nested,Transcripts, Nested
D017475 Receptors, Nerve Growth Factor Cell surface receptors that bind NERVE GROWTH FACTOR; (NGF) and a NGF-related family of neurotrophic factors that includes neurotrophins, BRAIN-DERIVED NEUROTROPHIC FACTOR and CILIARY NEUROTROPHIC FACTOR. NGF Receptors,Nerve Growth Factor Receptors,Neurotrophic Factor Receptor,Neurotrophin Receptor,Receptors, NGF,Receptors, Neurotrophin,Neurotrophin Receptors,Receptors, Neurotrophic Factor,Neurotrophic Factor Receptors,Receptor, Neurotrophic Factor,Receptor, Neurotrophin

Related Publications

M A Smith, and G R Fanger, and L T O'Connor, and P Bridle, and R A Maue
January 1992, Journal of neuroscience research,
M A Smith, and G R Fanger, and L T O'Connor, and P Bridle, and R A Maue
September 1994, Science (New York, N.Y.),
M A Smith, and G R Fanger, and L T O'Connor, and P Bridle, and R A Maue
April 1997, The Journal of biological chemistry,
M A Smith, and G R Fanger, and L T O'Connor, and P Bridle, and R A Maue
November 1991, The Journal of cell biology,
M A Smith, and G R Fanger, and L T O'Connor, and P Bridle, and R A Maue
October 1996, Brain research,
M A Smith, and G R Fanger, and L T O'Connor, and P Bridle, and R A Maue
July 1998, Neurochemical research,
M A Smith, and G R Fanger, and L T O'Connor, and P Bridle, and R A Maue
January 1988, Advances in enzyme regulation,
M A Smith, and G R Fanger, and L T O'Connor, and P Bridle, and R A Maue
April 1990, Molecular and cellular biology,
M A Smith, and G R Fanger, and L T O'Connor, and P Bridle, and R A Maue
March 1989, Proceedings of the National Academy of Sciences of the United States of America,
M A Smith, and G R Fanger, and L T O'Connor, and P Bridle, and R A Maue
April 1982, Brain research,
Copied contents to your clipboard!