Quantitative and neurogenic analysis of neurons with supraspinal projections in the superficial dorsal horn of the rat lumbar spinal cord. 1997

T N Bice, and J A Beal
Department of Cellular Biology and Anatomy, Louisiana State University Medical Center in Shreveport, 71130, USA.

Dual retrograde axonal tracers, Fluoro-Gold (FG) and true blue (TB), were used in conjunction with [3H]thymidine autoradiography to determine the number and neurogenic pattern of neurons with supraspinal projections in the superficial dorsal horn (SDH), i.e., laminae I and II, in spinal segment L1 of the rat. FG was injected into rostral brain centers (dorsal thalamus and midbrain), and TB was injected into the caudal brainstem (medulla) in young adult rats previously administered [3H]thymidine in utero. Following stereological correction, each dorsal horn had an average of 1.22 neurons in lamina I and 0.24 neurons in lamina II that had supraspinal projections per 10-microm transverse section. In the SDH, 52% of the neurons with supraspinal projections were found to project to rostral brain centers alone, 3.0% only to the caudal brainstem, and 45% to both areas. There was no significant difference in the percentage distribution of each of the three groups of neurons between lamina I and lamina II. Cell counts in the present study, in conjunction with previous observations in the literature, suggest that the majority of supraspinal projection neurons in the SDH fall into two groups: 1) spinomesencephalic neurons with collaterals to the medulla and 2) spinothalamic neurons with collaterals to the midbrain. The neurogenesis of supraspinal projection neurons in the SDH proceeded along an axon-length gradient, whereby neurons with the longest axons, those with projections to rostral brain centers, completed neurogenesis prior to neurons with shorter axons, those with projections only to the caudal brainstem. The generation of all SDH neurons with supraspinal projections was completed on embryonic day 14 (E14), 2 days prior to the completion of neurogenesis for SDH neurons with intraspinal projections.

UI MeSH Term Description Entries
D008161 Lumbosacral Region Region of the back including the LUMBAR VERTEBRAE, SACRUM, and nearby structures. Lumbar Region,Lumbar Regions,Lumbosacral Regions,Region, Lumbar,Region, Lumbosacral,Regions, Lumbar,Regions, Lumbosacral
D008526 Medulla Oblongata The lower portion of the BRAIN STEM. It is inferior to the PONS and anterior to the CEREBELLUM. Medulla oblongata serves as a relay station between the brain and the spinal cord, and contains centers for regulating respiratory, vasomotor, cardiac, and reflex activities. Accessory Cuneate Nucleus,Ambiguous Nucleus,Arcuate Nucleus of the Medulla,Arcuate Nucleus-1,External Cuneate Nucleus,Lateral Cuneate Nucleus,Nucleus Ambiguus,Ambiguus, Nucleus,Arcuate Nucleus 1,Arcuate Nucleus-1s,Cuneate Nucleus, Accessory,Cuneate Nucleus, External,Cuneate Nucleus, Lateral,Medulla Oblongatas,Nucleus, Accessory Cuneate,Nucleus, Ambiguous,Nucleus, External Cuneate,Nucleus, Lateral Cuneate
D008636 Mesencephalon The middle of the three primitive cerebral vesicles of the embryonic brain. Without further subdivision, midbrain develops into a short, constricted portion connecting the PONS and the DIENCEPHALON. Midbrain contains two major parts, the dorsal TECTUM MESENCEPHALI and the ventral TEGMENTUM MESENCEPHALI, housing components of auditory, visual, and other sensorimoter systems. Midbrain,Mesencephalons,Midbrains
D009434 Neural Pathways Neural tracts connecting one part of the nervous system with another. Neural Interconnections,Interconnection, Neural,Interconnections, Neural,Neural Interconnection,Neural Pathway,Pathway, Neural,Pathways, Neural
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D002452 Cell Count The number of CELLS of a specific kind, usually measured per unit volume or area of sample. Cell Density,Cell Number,Cell Counts,Cell Densities,Cell Numbers,Count, Cell,Counts, Cell,Densities, Cell,Density, Cell,Number, Cell,Numbers, Cell
D005314 Embryonic and Fetal Development Morphological and physiological development of EMBRYOS or FETUSES. Embryo and Fetal Development,Prenatal Programming,Programming, Prenatal
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001345 Autoradiography The making of a radiograph of an object or tissue by recording on a photographic plate the radiation emitted by radioactive material within the object. (Dorland, 27th ed) Radioautography

Related Publications

T N Bice, and J A Beal
February 1968, The Journal of comparative neurology,
T N Bice, and J A Beal
December 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience,
T N Bice, and J A Beal
December 1984, Neurosurgery,
T N Bice, and J A Beal
January 1989, Neuroscience,
Copied contents to your clipboard!