Chronic blockade of glutamate-mediated bioelectric activity in long-term organotypic neocortical explants differentially effects pyramidal/non-pyramidal dendritic morphology. 1997

R E Baker, and P Wolters, and J van Pelt
Netherlands Institute for Brain Research, Amsterdam.

Dendritic/axonal growth has been examined in long-term organotypic neocortical explants taken from neonatal rat pups and grown either as isolated slices or as co-cultures. The quantitative light microscopic measurement of dendritic and axonal branching patterns within both types of explants was carried out on Golgi-stained materials. Spontaneous bioelectric activity (SBA) was blocked within both types of explants using a combination of APV and DNQX, NMDA and non-NMDA receptor antagonists, respectively. No extracellularly measurable SBA was observed to occur in the silenced explants in the presence of both antagonists but reappeared following wash-out with control medium. In both control and silenced explants, the overall cellular organization of the slice was maintained throughout the culturing period, with distinguishable pyramidal and non-pyramidal neurons located within the same layers and with the same orientations as observed in situ. The major findings of the present study show the following. (i) Pyramidal neurones chronically exposed to APV/DNQX exhibited no basal dendritic growth in co-cultured explants, while growth of apical dendritic lengths was similar to control values in the absence of SBA. (ii) Pyramidal neurones, nonetheless, exhibited significant terminal segment growth under SBA blockade which was correlated with a concomitant decrease in number of basal dendrites. (iii) Axonal growth in co-cultures was not sustained in silenced pyramidal neurones. (iv) Non-pyramidal neurones showed significant total dendritic and axonal growth in co-cultures following APV/DNQX treatment. (v) Non-pyramidal cells in co-cultures experienced an increase in terminal segment length at 2 weeks which declined in the third week. This increase-decrease was correlated with a decrease-increase in the total number of dendritic segments during the second and third weeks, respectively. (vi) In isolated explants the only departure from control growth curves was a significant increase in terminal segment length which was offset by a similar decrease in number of dendritic segments under APV/DNQX growth conditions. Thus the chronic loss of glutamate-mediated SBA differentially effected pyramidal and non-pyramidal neurones in isolated and co-cultured explants, with pyramidal neurones experiencing the more pronounced effects. We conclude that SBA effects the dynamics of neuritic elongation and branching and that these changes are most dramatically seen in co-cultures which cross-innervate one another, presumably via pyramidal axons. We hypothesize that the activity-dependent changes associated with reduction in pyramidal dendritic and axonal growth may be associated with neurotrophin receptor production/maturation.

UI MeSH Term Description Entries
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009924 Organ Culture Techniques A technique for maintenance or growth of animal organs in vitro. It refers to three-dimensional cultures of undisaggregated tissue retaining some or all of the histological features of the tissue in vivo. (Freshney, Culture of Animal Cells, 3d ed, p1) Organ Culture,Culture Technique, Organ,Culture Techniques, Organ,Organ Culture Technique,Organ Cultures
D003712 Dendrites Extensions of the nerve cell body. They are short and branched and receive stimuli from other NEURONS. Dendrite
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon
D017208 Rats, Wistar A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain. Wistar Rat,Rat, Wistar,Wistar Rats
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D017966 Pyramidal Cells Projection neurons in the CEREBRAL CORTEX and the HIPPOCAMPUS. Pyramidal cells have a pyramid-shaped soma with the apex and an apical dendrite pointed toward the pial surface and other dendrites and an axon emerging from the base. The axons may have local collaterals but also project outside their cortical region. Pyramidal Neurons,Cell, Pyramidal,Cells, Pyramidal,Neuron, Pyramidal,Neurons, Pyramidal,Pyramidal Cell,Pyramidal Neuron
D018691 Excitatory Amino Acid Antagonists Drugs that bind to but do not activate excitatory amino acid receptors, thereby blocking the actions of agonists. Amino Acids, Excitatory, Antagonists,Excitatory Amino Acid Antagonist,Glutamate Antagonist,Glutamate Antagonists,Glutamate Receptor Antagonist,Amino Acid Antagonists, Excitatory,Antagonists, Excitatory Amino Acid,EAA Antagonists,Glutamate Receptor Antagonists,Antagonist, Glutamate,Antagonist, Glutamate Receptor,Antagonists, EAA,Antagonists, Glutamate,Antagonists, Glutamate Receptor,Receptor Antagonist, Glutamate,Receptor Antagonists, Glutamate

Related Publications

R E Baker, and P Wolters, and J van Pelt
April 2014, Development (Cambridge, England),
R E Baker, and P Wolters, and J van Pelt
October 2001, The Journal of neuroscience : the official journal of the Society for Neuroscience,
R E Baker, and P Wolters, and J van Pelt
January 2007, The Journal of physiology,
R E Baker, and P Wolters, and J van Pelt
June 1994, Journal of neurophysiology,
R E Baker, and P Wolters, and J van Pelt
June 2002, Journal of neurophysiology,
R E Baker, and P Wolters, and J van Pelt
January 1991, International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience,
R E Baker, and P Wolters, and J van Pelt
December 2008, The European journal of neuroscience,
Copied contents to your clipboard!