Genomic organization of Drosophila poly(ADP-ribose) polymerase and distribution of its mRNA during development. 1998

S Hanai, and M Uchida, and S Kobayashi, and M Miwa, and K Uchida
Department of Biochemistry and Molecular Oncology, Institute of Basic Medical Sciences, Center for Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Ibaraki 305, Japan.

Poly(ADP-ribosyl)ation of proteins catalyzed by poly(ADP-ribose) polymerase (PARP; EC 2.4.2.30) modulates several biological activities. However, little is known about the role of PARP in developmental process. Here we report the organization of the Drosophila PARP gene and the expression patterns during Drosophila development. The Drosophila PARP gene was a single copy gene mapped at 81F and composed of six exons. Organization of exons corresponds to the functional domains of PARP. The DNA-binding domain was encoded by exons 1, 2, 3, and 4. The auto-modification domain was encoded by exon 5, and the catalytic domain was in exon 6. The promoter region of the PARP gene contained putative TATA box and CCAAT box unlike human PARP. Expression of the PARP gene was at high levels in embryos at 0-6 h after egg laying and gradually decreased until 8 h. PARP mRNA increased again at 8-12 h and was observed in pupae and adult flies but not in larvae. In situ mRNA hybridization of embryos revealed large amount of PARP mRNA observed homogeneously except the pole cells at the early stage of embryos, possibly due to presence of the maternal mRNA for PARP, and decreased gradually until the stage 12 in which stage PARP mRNA localized in anal plates. At late stage of embryogenesis PARP mRNA was localized in cells along the central nervous system.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010053 Ovary The reproductive organ (GONADS) in female animals. In vertebrates, the ovary contains two functional parts: the OVARIAN FOLLICLE for the production of female germ cells (OOGENESIS); and the endocrine cells (GRANULOSA CELLS; THECA CELLS; and LUTEAL CELLS) for the production of ESTROGENS and PROGESTERONE. Ovaries
D011065 Poly(ADP-ribose) Polymerases Enzymes that catalyze the transfer of multiple ADP-RIBOSE groups from nicotinamide-adenine dinucleotide (NAD) onto protein targets, thus building up a linear or branched homopolymer of repeating ADP-ribose units i.e., POLY ADENOSINE DIPHOSPHATE RIBOSE. ADP-Ribosyltransferase (Polymerizing),Poly ADP Ribose Polymerase,Poly(ADP-Ribose) Synthase,Poly(ADP-ribose) Polymerase,PARP Polymerase,Poly ADP Ribose Transferase,Poly ADP-Ribose Synthase,Poly(ADP-Ribose) Transferase,Poly(ADPR) Polymerase,Poly(ADPribose) Polymerase,Poly ADP Ribose Synthase,Polymerase, PARP,Synthase, Poly ADP-Ribose
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004331 Drosophila melanogaster A species of fruit fly frequently used in genetics because of the large size of its chromosomes. D. melanogaster,Drosophila melanogasters,melanogaster, Drosophila
D005260 Female Females
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated

Related Publications

S Hanai, and M Uchida, and S Kobayashi, and M Miwa, and K Uchida
April 2001, Mutation research,
S Hanai, and M Uchida, and S Kobayashi, and M Miwa, and K Uchida
May 1996, The Histochemical journal,
S Hanai, and M Uchida, and S Kobayashi, and M Miwa, and K Uchida
May 1989, Nucleic acids research,
S Hanai, and M Uchida, and S Kobayashi, and M Miwa, and K Uchida
December 2010, Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer,
S Hanai, and M Uchida, and S Kobayashi, and M Miwa, and K Uchida
June 2015, The Journal of pharmacology and experimental therapeutics,
S Hanai, and M Uchida, and S Kobayashi, and M Miwa, and K Uchida
February 2003, Current medicinal chemistry,
S Hanai, and M Uchida, and S Kobayashi, and M Miwa, and K Uchida
September 2019, Current opinion in oncology,
S Hanai, and M Uchida, and S Kobayashi, and M Miwa, and K Uchida
September 1998, Experimental gerontology,
S Hanai, and M Uchida, and S Kobayashi, and M Miwa, and K Uchida
November 1989, Biochimica et biophysica acta,
Copied contents to your clipboard!