Hypothalamic/pituitary-axis of the spontaneous dwarf rat: autofeedback regulation of growth hormone (GH) includes suppression of GH releasing-hormone receptor messenger ribonucleic acid. 1998

J Kamegai, and T G Unterman, and L A Frohman, and R D Kineman
Department of Medicine, University of Illinois at Chicago, 60612, USA.

In this study, the spontaneous dwarf rat (SDR) has been used to examine GHRH production and action in the selective absence of endogenous GH. This dwarf model is unique in that GH is not produced because of a point mutation in the GH gene. However, other pituitary hormones are not obviously compromised. Examination of the hypothalamic pituitary-axis of SDRs revealed that GHRH messenger RNA (mRNA) levels were increased, whereas somatostatin (SS) and neuropeptide Y (NPY) mRNA levels were decreased, compared with age- and sex-matched normal controls, as determined by Northern blot analysis (n = 5 animals/group; P < 0.05). The elevated levels of GHRH mRNA in the SDR hypothalamus were accompanied by a 56% increase in pituitary GHRH receptor (GHRH-R) mRNA, as determined by RT-PCR (P < 0.05). To investigate whether the up-regulation of GHRH-R mRNA resulted in an increase in GHRH-R function, SDR and control pituitary cell cultures were challenged with GHRH (0.001-10 nM; 15 min), and intracellular cAMP concentrations were measured by RIA. Interestingly, SDR pituitary cells were hyperresponsive to 1 and 10 nM GHRH, which induced a rise in intracellular cAMP concentrations 50% greater than that observed in control cultures (n = 3 separate experiments; P < 0.05 and P < 0.01, respectively). Replacement of GH, by osmotic minipump (10 microg/h for 72 h), resulted in the suppression of GHRH mRNA levels (P < 0.01), whereas SS and NPY mRNA levels were increased (P < 0.05), compared with vehicle-treated controls (n = 5 animals/treatment group). Consonant with the fall in hypothalamic GHRH mRNA was a decrease in pituitary GHRH-R mRNA levels. Although replacement of insulin-like growth factor-I (IGF-I), by osmotic pump (5 microg/h for 72 h), resulted in a rise in circulating IGF-I concentrations comparable with that observed after GH replacement, IGF-I treatment was ineffective in modulating GHRH, SS, or NPY mRNA levels. However, IGF-I treatment did reduce pituitary GHRH-R mRNA levels, compared with vehicle-treated controls (P < 0.05). These results further validate the role of GH as a negative regulator of hypothalamic GHRH expression, and they suggest that SS and NPY act as intermediaries in GH-induced suppression of hypothalamic GHRH synthesis. These data also demonstrate that increases in circulating IGF-I are not responsible for changes in hypothalamic function observed after GH treatment. Finally, this report establishes modulation of GHRH-R synthesis as a component of GH autofeedback regulation.

UI MeSH Term Description Entries
D007030 Hypothalamo-Hypophyseal System A collection of NEURONS, tracts of NERVE FIBERS, endocrine tissue, and blood vessels in the HYPOTHALAMUS and the PITUITARY GLAND. This hypothalamo-hypophyseal portal circulation provides the mechanism for hypothalamic neuroendocrine (HYPOTHALAMIC HORMONES) regulation of pituitary function and the release of various PITUITARY HORMONES into the systemic circulation to maintain HOMEOSTASIS. Hypothalamic Hypophyseal System,Hypothalamo-Pituitary-Adrenal Axis,Hypophyseal Portal System,Hypothalamic-Pituitary Unit,Hypothalamic Hypophyseal Systems,Hypothalamic Pituitary Unit,Hypothalamo Hypophyseal System,Hypothalamo Pituitary Adrenal Axis,Portal System, Hypophyseal
D007334 Insulin-Like Growth Factor I A well-characterized basic peptide believed to be secreted by the liver and to circulate in the blood. It has growth-regulating, insulin-like, and mitogenic activities. This growth factor has a major, but not absolute, dependence on GROWTH HORMONE. It is believed to be mainly active in adults in contrast to INSULIN-LIKE GROWTH FACTOR II, which is a major fetal growth factor. IGF-I,Somatomedin C,IGF-1,IGF-I-SmC,Insulin Like Growth Factor I,Insulin-Like Somatomedin Peptide I,Insulin Like Somatomedin Peptide I
D010902 Pituitary Gland A small, unpaired gland situated in the SELLA TURCICA. It is connected to the HYPOTHALAMUS by a short stalk which is called the INFUNDIBULUM. Hypophysis,Hypothalamus, Infundibular,Infundibular Stalk,Infundibular Stem,Infundibulum (Hypophysis),Infundibulum, Hypophyseal,Pituitary Stalk,Hypophyseal Infundibulum,Hypophyseal Stalk,Hypophysis Cerebri,Infundibulum,Cerebri, Hypophysis,Cerebrus, Hypophysis,Gland, Pituitary,Glands, Pituitary,Hypophyseal Stalks,Hypophyses,Hypophysis Cerebrus,Infundibular Hypothalamus,Infundibular Stalks,Infundibulums,Pituitary Glands,Pituitary Stalks,Stalk, Hypophyseal,Stalk, Infundibular,Stalks, Hypophyseal,Stalks, Infundibular
D011922 Rats, Mutant Strains Rats bearing mutant genes which are phenotypically expressed in the animals. Mutant Strains Rat,Mutant Strains Rats,Rat, Mutant Strains,Strains Rat, Mutant,Strains Rats, Mutant
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D004392 Dwarfism A genetic or pathological condition that is characterized by short stature and undersize. Abnormal skeletal growth usually results in an adult who is significantly below the average height. Nanism
D005246 Feedback A mechanism of communication within a system in that the input signal generates an output response which returns to influence the continued activity or productivity of that system. Feedbacks
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D006706 Homeostasis The processes whereby the internal environment of an organism tends to remain balanced and stable. Autoregulation
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

J Kamegai, and T G Unterman, and L A Frohman, and R D Kineman
June 1997, Endocrinology,
J Kamegai, and T G Unterman, and L A Frohman, and R D Kineman
July 1992, The Journal of clinical investigation,
J Kamegai, and T G Unterman, and L A Frohman, and R D Kineman
September 1990, Endocrinology,
J Kamegai, and T G Unterman, and L A Frohman, and R D Kineman
March 1997, Endocrinology,
J Kamegai, and T G Unterman, and L A Frohman, and R D Kineman
September 1991, Endocrinology,
J Kamegai, and T G Unterman, and L A Frohman, and R D Kineman
May 1996, Endocrinology,
Copied contents to your clipboard!