Characterization of a sodium-dependent transport system for butyrobetaine into rat liver plasma membrane vesicles. 1998

S Berardi, and B Stieger, and S Wachter, and B O'Neill, and S Krahenbühl
Department of Internal Medicine, University Hospital, Zürich, Switzerland.

Butyrobetaine transport into the liver was studied using isolated rat hepatocyte plasma membrane vesicles. In the presence of a sodium chloride gradient, an overshoot could be observed, indicating active sodium-dependent transport. A similar overshoot was recorded in the presence of lithium, but not of potassium, cesium, or choline chloride. Investigation of several sodium salts revealed that an overshoot could only be observed in the presence of chloride, but not of nitrate, thiocyanate, sulfate, or gluconate. An osmolarity plot in the presence of sodium chloride revealed a slope different from zero and a positive intercept, indicating active transport and nonspecific binding, respectively. In agreement with the osmolarity plot, the kinetic characterization of butyrobetaine transport revealed a binding and a saturable component. The saturable component could be described by Michaelis-Menten kinetics, with a Km of 4.88 +/- 0.70 mmol/L and a Vmax of 4.16 +/- 0.73 picomoles per milligram of protein per second. Butyrobetaine transport could be inhibited significantly (30%) by 250 micromol/L propionylcarnitine, but not by D- or L-carnitine, other acylcarnitines (acetylcarnitine, isovalerylcarnitine, palmitoylcarnitine), trimethyllysine, or quinine. Butyrobetaine transport activity was also expressed in Xenopus laevis oocytes by injecting mRNA isolated from rat liver or kidney. After 5 days of cultivation, the endogenous butyrobetaine transport activity was increased by 82% in oocytes injected with liver mRNA and by 99% in oocytes injected with kidney mRNA. The studies show that butyrobetaine is transported actively across the basolateral plasma membrane of hepatocytes and that this transport is driven by sodium and chloride gradients. This transport is quite specific for butyrobetaine and is not rate-limiting for carnitine biosynthesis.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D009865 Oocytes Female germ cells derived from OOGONIA and termed OOCYTES when they enter MEIOSIS. The primary oocytes begin meiosis but are arrested at the diplotene state until OVULATION at PUBERTY to give rise to haploid secondary oocytes or ova (OVUM). Ovocytes,Oocyte,Ovocyte
D002331 Carnitine A constituent of STRIATED MUSCLE and LIVER. It is an amino acid derivative and an essential cofactor for fatty acid metabolism. Bicarnesine,L-Carnitine,Levocarnitine,Vitamin BT,L Carnitine
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001622 Betaine A naturally occurring compound that has been of interest for its role in osmoregulation. As a drug, betaine hydrochloride has been used as a source of hydrochloric acid in the treatment of hypochlorhydria. Betaine has also been used in the treatment of liver disorders, for hyperkalemia, for homocystinuria, and for gastrointestinal disturbances. (From Martindale, The Extra Pharmacopoeia, 30th ed, p1341) Lycine,Oxyneurine,Acidin-Pepsin,Betaine Hydrochloride,C.B.B.,Citrate de Bétaïne Beaufour,Citrate de Bétaïne UPSA,Cystadane,Glycine Betaine,Hepastyl,Novobetaine,Scorbo-bétaïne,Stea-16,Acidin Pepsin,AcidinPepsin,Betaine, Glycine,Hydrochloride, Betaine,Scorbo bétaïne,Scorbobétaïne,Stea 16,Stea16
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic
D012964 Sodium A member of the alkali group of metals. It has the atomic symbol Na, atomic number 11, and atomic weight 23. Sodium Ion Level,Sodium-23,Ion Level, Sodium,Level, Sodium Ion,Sodium 23

Related Publications

S Berardi, and B Stieger, and S Wachter, and B O'Neill, and S Krahenbühl
July 1993, Biochimica et biophysica acta,
S Berardi, and B Stieger, and S Wachter, and B O'Neill, and S Krahenbühl
September 1978, The Biochemical journal,
S Berardi, and B Stieger, and S Wachter, and B O'Neill, and S Krahenbühl
January 1981, The Journal of membrane biology,
S Berardi, and B Stieger, and S Wachter, and B O'Neill, and S Krahenbühl
August 1990, The Journal of biological chemistry,
S Berardi, and B Stieger, and S Wachter, and B O'Neill, and S Krahenbühl
May 1992, The Biochemical journal,
S Berardi, and B Stieger, and S Wachter, and B O'Neill, and S Krahenbühl
November 1991, The American journal of physiology,
S Berardi, and B Stieger, and S Wachter, and B O'Neill, and S Krahenbühl
November 1986, The American journal of physiology,
S Berardi, and B Stieger, and S Wachter, and B O'Neill, and S Krahenbühl
April 1998, The Biochemical journal,
S Berardi, and B Stieger, and S Wachter, and B O'Neill, and S Krahenbühl
July 1992, Pflugers Archiv : European journal of physiology,
S Berardi, and B Stieger, and S Wachter, and B O'Neill, and S Krahenbühl
April 1980, European journal of biochemistry,
Copied contents to your clipboard!