Sustained sensory/motor and cognitive deficits with neuronal apoptosis following controlled cortical impact brain injury in the mouse. 1998

G B Fox, and L Fan, and R A Levasseur, and A I Faden
Georgetown Institute for Cognitive and Computational Sciences and Department of Neurology, Georgetown University Medical Center, Washington, DC 20007-2197, USA.

A mouse model of traumatic brain injury was developed using a device that produces controlled cortical impact (CCI), permitting independent manipulation of tissue deformation and impact velocity. The left parietotemporal cortex was subjected to CCI [1 mm tissue deformation and 4.5 m/s tip velocity (mild), or 6.0 m/s (moderate)] or sham surgery. Injured animals showed delayed recovery of pedal withdrawal and righting reflexes compared to sham-operated controls. Significant severity-related deficits in forepaw contraflexion and performance on a rotarod device were evident for up to 7 days. Using a beam walking task to measure fine motor coordination, pronounced deficits were apparent for at least 2 and 4 weeks following mild and moderate CCI, respectively. Cognitive function was evaluated using the water maze. Impairment of place learning, related to injury severity, was observed in mice trained 7-10 days following CCI. Similarly, working memory deficits were evident in a variation of this task when examined 21-23 days postinjury. Mild CCI caused necrosis of subcortical white matter with minimal damage to somatosensory cortex. Moderate CCI produced extensive cortical and subcortical white matter damage. Triple fluorescence labeling with terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL), antineuronal nuclear protein (NeuN), and Hoechst 33258 of parallel sections showed frequent apoptotic neurons. These findings demonstrate sustained and reproducible deficits in sensory/motor function and spatial learning in the CCI-injured mouse correlating with injury severity. Mechanisms of neuronal cell death after trauma as well as strategies for evaluating novel pharmacological treatment strategies may be identified using this model.

UI MeSH Term Description Entries
D008297 Male Males
D008570 Memory, Short-Term Remembrance of information for a few seconds to hours. Immediate Recall,Memory, Immediate,Working Memory,Memory, Shortterm,Immediate Memories,Immediate Memory,Immediate Recalls,Memories, Immediate,Memories, Short-Term,Memories, Shortterm,Memory, Short Term,Recall, Immediate,Recalls, Immediate,Short-Term Memories,Short-Term Memory,Shortterm Memories,Shortterm Memory,Working Memories
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D009048 Motor Skills Performance of complex motor acts. Motor Skill,Skill, Motor,Skills, Motor
D009410 Nerve Degeneration Loss of functional activity and trophic degeneration of nerve axons and their terminal arborizations following the destruction of their cells of origin or interruption of their continuity with these cells. The pathology is characteristic of neurodegenerative diseases. Often the process of nerve degeneration is studied in research on neuroanatomical localization and correlation of the neurophysiology of neural pathways. Neuron Degeneration,Degeneration, Nerve,Degeneration, Neuron,Degenerations, Nerve,Degenerations, Neuron,Nerve Degenerations,Neuron Degenerations
D011596 Psychomotor Disorders Abnormalities of motor function that are associated with organic and non-organic cognitive disorders. Psychomotor Impairment,Developmental Psychomotor Disorders,Psychomotor Disorders, Developmental,Developmental Psychomotor Disorder,Impairment, Psychomotor,Impairments, Psychomotor,Psychomotor Disorder, Developmental,Psychomotor Impairments
D012075 Remission, Spontaneous A spontaneous diminution or abatement of a disease over time, without formal treatment. Spontaneous Healing,Spontaneous Regression,Spontaneous Remission,Healing, Spontaneous,Regression, Spontaneous,Spontaneous Healings,Spontaneous Regressions
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D001925 Brain Damage, Chronic A condition characterized by long-standing brain dysfunction or damage, usually of three months duration or longer. Potential etiologies include BRAIN INFARCTION; certain NEURODEGENERATIVE DISORDERS; CRANIOCEREBRAL TRAUMA; ANOXIA, BRAIN; ENCEPHALITIS; certain NEUROTOXICITY SYNDROMES; metabolic disorders (see BRAIN DISEASES, METABOLIC); and other conditions. Encephalopathy, Chronic,Chronic Encephalopathy,Chronic Brain Damage
D001930 Brain Injuries Acute and chronic (see also BRAIN INJURIES, CHRONIC) injuries to the brain, including the cerebral hemispheres, CEREBELLUM, and BRAIN STEM. Clinical manifestations depend on the nature of injury. Diffuse trauma to the brain is frequently associated with DIFFUSE AXONAL INJURY or COMA, POST-TRAUMATIC. Localized injuries may be associated with NEUROBEHAVIORAL MANIFESTATIONS; HEMIPARESIS, or other focal neurologic deficits. Brain Lacerations,Acute Brain Injuries,Brain Injuries, Acute,Brain Injuries, Focal,Focal Brain Injuries,Injuries, Acute Brain,Injuries, Brain,Acute Brain Injury,Brain Injury,Brain Injury, Acute,Brain Injury, Focal,Brain Laceration,Focal Brain Injury,Injuries, Focal Brain,Injury, Acute Brain,Injury, Brain,Injury, Focal Brain,Laceration, Brain,Lacerations, Brain

Related Publications

G B Fox, and L Fan, and R A Levasseur, and A I Faden
January 1992, Journal of neurotrauma,
G B Fox, and L Fan, and R A Levasseur, and A I Faden
September 1997, Journal of neurotrauma,
G B Fox, and L Fan, and R A Levasseur, and A I Faden
March 2001, Annals of neurology,
G B Fox, and L Fan, and R A Levasseur, and A I Faden
February 1997, Journal of neurotrauma,
G B Fox, and L Fan, and R A Levasseur, and A I Faden
April 2010, Applied neuropsychology,
G B Fox, and L Fan, and R A Levasseur, and A I Faden
January 2021, Journal of molecular neuroscience : MN,
G B Fox, and L Fan, and R A Levasseur, and A I Faden
April 1996, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!