Arterial injury by cholesterol oxidation products causes endothelial dysfunction and arterial wall cholesterol accumulation. 1998

J X Rong, and S Rangaswamy, and L Shen, and R Dave, and Y H Chang, and H Peterson, and H N Hodis, and G M Chisolm, and A Sevanian
Department of Pathology, Division of Cardiology, and Atherosclerosis Research Unit, School of Medicine, Los Angeles, CA, USA.

Cholesterol oxidation products (ChOx) have been reported to cause acute vascular injury in vivo; however, the pharmacokinetics of ChOx after administration and the mechanisms by which they cause chronic vascular injury are not well understood. To further study the pharmacokinetics and atherogenic properties of ChOx, New Zealand White rabbits were injected intravenously (70 mg per injection, 20 injections per animal) with a ChOx mixture having a composition similar to that found in vivo during a 70-day period. Total ChOx concentrations in plasma peaked almost immediately after a single injection, declined rapidly, and returned to preinjection levels in 2 hours. After multiple injections, the ChOx concentrations rose gradually to levels 2- to 3-fold above baseline levels, increasing mostly in the cholesteryl ester fraction of LDL and VLDL. Rabbit serum and the isolated LDL/VLDL fraction containing elevated ChOx concentrations were cytotoxic to V79 fibroblasts and rabbit aortic endothelial cells. At the time of killing, cholesterol levels in the aortas from ChOx-injected rabbits were significantly elevated despite the fact that plasma cholesterol levels remained in the normal range. In addition, aortas from the ChOx-injected rabbits retained more 125I-labeled horseradish peroxidase, measured 20 minutes after intravenous injection. Transmural concentration profiles across the arterial wall also showed increased horseradish peroxidase accumulation in the inner half of the media from the thoracic aorta in ChOx-injected rabbits. In conclusion, ChOx injection resulted in accumulation of circulating ChOx and induced increased vascular permeability and accumulation of lipids and macromolecules. This study reveals that even under normocholesterolemic conditions, ChOx can cause endothelial dysfunction, increased macromolecular permeability, and increased cholesterol accumulation, parameters believed to be involved in the development of early atherosclerotic lesions.

UI MeSH Term Description Entries
D008077 Lipoproteins, LDL A class of lipoproteins of small size (18-25 nm) and light (1.019-1.063 g/ml) particles with a core composed mainly of CHOLESTEROL ESTERS and smaller amounts of TRIGLYCERIDES. The surface monolayer consists mostly of PHOSPHOLIPIDS, a single copy of APOLIPOPROTEIN B-100, and free cholesterol molecules. The main LDL function is to transport cholesterol and cholesterol esters to extrahepatic tissues. Low-Density Lipoprotein,Low-Density Lipoproteins,beta-Lipoprotein,beta-Lipoproteins,LDL(1),LDL(2),LDL-1,LDL-2,LDL1,LDL2,Low-Density Lipoprotein 1,Low-Density Lipoprotein 2,LDL Lipoproteins,Lipoprotein, Low-Density,Lipoproteins, Low-Density,Low Density Lipoprotein,Low Density Lipoprotein 1,Low Density Lipoprotein 2,Low Density Lipoproteins,beta Lipoprotein,beta Lipoproteins
D008079 Lipoproteins, VLDL A class of lipoproteins of very light (0.93-1.006 g/ml) large size (30-80 nm) particles with a core composed mainly of TRIGLYCERIDES and a surface monolayer of PHOSPHOLIPIDS and CHOLESTEROL into which are imbedded the apolipoproteins B, E, and C. VLDL facilitates the transport of endogenously made triglycerides to extrahepatic tissues. As triglycerides and Apo C are removed, VLDL is converted to INTERMEDIATE-DENSITY LIPOPROTEINS, then to LOW-DENSITY LIPOPROTEINS from which cholesterol is delivered to the extrahepatic tissues. Pre-beta-Lipoprotein,Prebeta-Lipoprotein,Prebeta-Lipoproteins,Very Low Density Lipoprotein,Very-Low-Density Lipoprotein,Very-Low-Density Lipoproteins,Lipoprotein VLDL II,Lipoproteins, VLDL I,Lipoproteins, VLDL III,Lipoproteins, VLDL1,Lipoproteins, VLDL2,Lipoproteins, VLDL3,Pre-beta-Lipoproteins,Lipoprotein, Very-Low-Density,Lipoproteins, Very-Low-Density,Pre beta Lipoprotein,Pre beta Lipoproteins,Prebeta Lipoprotein,Prebeta Lipoproteins,VLDL Lipoproteins,VLDL1 Lipoproteins,VLDL2 Lipoproteins,VLDL3 Lipoproteins,Very Low Density Lipoproteins
D008081 Liposomes Artificial, single or multilaminar vesicles (made from lecithins or other lipids) that are used for the delivery of a variety of biological molecules or molecular complexes to cells, for example, drug delivery and gene transfer. They are also used to study membranes and membrane proteins. Niosomes,Transferosomes,Ultradeformable Liposomes,Liposomes, Ultra-deformable,Liposome,Liposome, Ultra-deformable,Liposome, Ultradeformable,Liposomes, Ultra deformable,Liposomes, Ultradeformable,Niosome,Transferosome,Ultra-deformable Liposome,Ultra-deformable Liposomes,Ultradeformable Liposome
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002784 Cholesterol The principal sterol of all higher animals, distributed in body tissues, especially the brain and spinal cord, and in animal fats and oils. Epicholesterol
D004730 Endothelium, Vascular Single pavement layer of cells which line the luminal surface of the entire vascular system and regulate the transport of macromolecules and blood components. Capillary Endothelium,Vascular Endothelium,Capillary Endotheliums,Endothelium, Capillary,Endotheliums, Capillary,Endotheliums, Vascular,Vascular Endotheliums
D006735 Horseradish Peroxidase An enzyme isolated from horseradish which is able to act as an antigen. It is frequently used as a histochemical tracer for light and electron microscopy. Its antigenicity has permitted its use as a combined antigen and marker in experimental immunology. Alpha-Peroxidase,Ferrihorseradish Peroxidase,Horseradish Peroxidase II,Horseradish Peroxidase III,Alpha Peroxidase,II, Horseradish Peroxidase,III, Horseradish Peroxidase,Peroxidase II, Horseradish,Peroxidase III, Horseradish,Peroxidase, Ferrihorseradish,Peroxidase, Horseradish

Related Publications

J X Rong, and S Rangaswamy, and L Shen, and R Dave, and Y H Chang, and H Peterson, and H N Hodis, and G M Chisolm, and A Sevanian
September 1995, Journal of lipid research,
J X Rong, and S Rangaswamy, and L Shen, and R Dave, and Y H Chang, and H Peterson, and H N Hodis, and G M Chisolm, and A Sevanian
February 1985, Atherosclerosis,
J X Rong, and S Rangaswamy, and L Shen, and R Dave, and Y H Chang, and H Peterson, and H N Hodis, and G M Chisolm, and A Sevanian
July 2003, Brain pathology (Zurich, Switzerland),
J X Rong, and S Rangaswamy, and L Shen, and R Dave, and Y H Chang, and H Peterson, and H N Hodis, and G M Chisolm, and A Sevanian
April 1975, The American journal of cardiology,
J X Rong, and S Rangaswamy, and L Shen, and R Dave, and Y H Chang, and H Peterson, and H N Hodis, and G M Chisolm, and A Sevanian
February 2023, Metabolism: clinical and experimental,
J X Rong, and S Rangaswamy, and L Shen, and R Dave, and Y H Chang, and H Peterson, and H N Hodis, and G M Chisolm, and A Sevanian
January 2001, BioFactors (Oxford, England),
J X Rong, and S Rangaswamy, and L Shen, and R Dave, and Y H Chang, and H Peterson, and H N Hodis, and G M Chisolm, and A Sevanian
January 1973, Nutrition and metabolism,
J X Rong, and S Rangaswamy, and L Shen, and R Dave, and Y H Chang, and H Peterson, and H N Hodis, and G M Chisolm, and A Sevanian
January 2017, Terapevticheskii arkhiv,
J X Rong, and S Rangaswamy, and L Shen, and R Dave, and Y H Chang, and H Peterson, and H N Hodis, and G M Chisolm, and A Sevanian
June 2024, Circulation,
J X Rong, and S Rangaswamy, and L Shen, and R Dave, and Y H Chang, and H Peterson, and H N Hodis, and G M Chisolm, and A Sevanian
June 2000, Journal of biomechanics,
Copied contents to your clipboard!