Bubble observation and transient pressure signals in mechanical heart valve cavitation study. 2003

Xu Lijun, and Yeo Joon Hock, and Ned H C Hwang
School of Mechanical and Production Engineering, Nanyang Technological University, Singapore.

OBJECTIVE Cavitation in the mechanical heart valve (MHV) was first detected in Edwards-Duromedics (ED) clinical explants. Early studies indicated that the pitted surface of the valve leaflet was due to cavitation phenomena occurring during valve closing. Cavitation is seen as the transient appearance of bubbles on the MHV surface on valve closure. The cavitation bubbles occur due to abrupt pressure changes in the vicinity of the valve on valve closing. Hence, analysis of the recorded field pressure can provide useful information relating to cavitation potential. In the present study, MHV cavitation potential was evaluated by counting bubble appearance probability and measuring bubble-size using an image-processing method. A simple and reliable technique using wavelet packet analysis (WPA) to evaluate cavitation potential was also investigated. METHODS A single-valve, pneumatic-driven burst tester system with adjustable pressure control unit, was used to simulate the closing process in the heart mitral valve at three driving pressures: 200, 500 and 1,000 mmHg, using three valve models. A triggering and imaging system was developed within the burst tester system to capture images of cavitation bubbles at predetermined time delays on valve closing. Transient pressure signals were recorded on both sides of the MHV occluder, using a high-frequency piezoelectric pressure transducer and a physiological pressure transducer. The pictures recorded were analyzed using image processing software to determine bubble appearance probability and bubble size. WPA was applied to the transient closing pressure signals to evaluate cavitation potential. RESULTS Cavitation intensity index (Cii) and bubble size-based cavitation index (BS-Ci) were measured by analyzing images captured at different time delays on valve closing at different driving pressures. WPA was used to analyze transient pressure signals at the inflow side of the MHV occluder at valve closure to calculate the WPA-based cavitation index (WPA-Ci). The three methods showed a similar trend for cavitation potential in the valves tested. CONCLUSIONS In the present study, two new approaches to evaluate MHV cavitation were investigated, namely WPA and BS-Ci. The results obtained produced a similar trend to that seen with an earlier method based on counting the probability that cavitation bubbles occur. As cavitation is primarily a function of the transient pressure within the vicinity of the closing valve occluder, the WPA method can be an effective method for future investigation of cavitation potential of mechanical heart valves.

UI MeSH Term Description Entries
D007091 Image Processing, Computer-Assisted A technique of inputting two-dimensional or three-dimensional images into a computer and then enhancing or analyzing the imagery into a form that is more useful to the human observer. Biomedical Image Processing,Computer-Assisted Image Processing,Digital Image Processing,Image Analysis, Computer-Assisted,Image Reconstruction,Medical Image Processing,Analysis, Computer-Assisted Image,Computer-Assisted Image Analysis,Computer Assisted Image Analysis,Computer Assisted Image Processing,Computer-Assisted Image Analyses,Image Analyses, Computer-Assisted,Image Analysis, Computer Assisted,Image Processing, Biomedical,Image Processing, Computer Assisted,Image Processing, Digital,Image Processing, Medical,Image Processings, Medical,Image Reconstructions,Medical Image Processings,Processing, Biomedical Image,Processing, Digital Image,Processing, Medical Image,Processings, Digital Image,Processings, Medical Image,Reconstruction, Image,Reconstructions, Image
D008422 Materials Testing The testing of materials and devices, especially those used for PROSTHESES AND IMPLANTS; SUTURES; TISSUE ADHESIVES; etc., for hardness, strength, durability, safety, efficacy, and biocompatibility. Biocompatibility Testing,Biocompatible Materials Testing,Hemocompatibility Testing,Testing, Biocompatible Materials,Testing, Hemocompatible Materials,Hemocompatibility Testings,Hemocompatible Materials Testing,Materials Testing, Biocompatible,Materials Testing, Hemocompatible,Testing, Biocompatibility,Testing, Hemocompatibility,Testing, Materials,Testings, Biocompatibility
D008943 Mitral Valve The valve between the left atrium and left ventricle of the heart. Bicuspid Valve,Bicuspid Valves,Mitral Valves,Valve, Bicuspid,Valve, Mitral,Valves, Bicuspid,Valves, Mitral
D008955 Models, Cardiovascular Theoretical representations that simulate the behavior or activity of the cardiovascular system, processes, or phenomena; includes the use of mathematical equations, computers and other electronic equipment. Cardiovascular Model,Cardiovascular Models,Model, Cardiovascular
D011312 Pressure A type of stress exerted uniformly in all directions. Its measure is the force exerted per unit area. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Pressures
D011474 Prosthesis Design The plan and delineation of prostheses in general or a specific prosthesis. Design, Prosthesis,Designs, Prosthesis,Prosthesis Designs
D006350 Heart Valve Prosthesis A device that substitutes for a heart valve. It may be composed of biological material (BIOPROSTHESIS) and/or synthetic material. Prosthesis, Heart Valve,Cardiac Valve Prosthesis,Cardiac Valve Prostheses,Heart Valve Prostheses,Prostheses, Cardiac Valve,Prostheses, Heart Valve,Prosthesis, Cardiac Valve,Valve Prostheses, Cardiac,Valve Prostheses, Heart,Valve Prosthesis, Cardiac,Valve Prosthesis, Heart
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001703 Biophysics The study of PHYSICAL PHENOMENA and PHYSICAL PROCESSES as applied to living things. Mechanobiology
D013995 Time The dimension of the physical universe which, at a given place, orders the sequence of events. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Effects, Long-Term,Effects, Longterm,Long-Term Effects,Longterm Effects,Effect, Long-Term,Effect, Longterm,Effects, Long Term,Long Term Effects,Long-Term Effect,Longterm Effect

Related Publications

Xu Lijun, and Yeo Joon Hock, and Ned H C Hwang
January 1996, ASAIO journal (American Society for Artificial Internal Organs : 1992),
Xu Lijun, and Yeo Joon Hock, and Ned H C Hwang
January 1998, ASAIO journal (American Society for Artificial Internal Organs : 1992),
Xu Lijun, and Yeo Joon Hock, and Ned H C Hwang
September 2004, Expert review of medical devices,
Xu Lijun, and Yeo Joon Hock, and Ned H C Hwang
January 2005, ASAIO journal (American Society for Artificial Internal Organs : 1992),
Xu Lijun, and Yeo Joon Hock, and Ned H C Hwang
January 2004, ASAIO journal (American Society for Artificial Internal Organs : 1992),
Xu Lijun, and Yeo Joon Hock, and Ned H C Hwang
January 1991, ASAIO transactions,
Xu Lijun, and Yeo Joon Hock, and Ned H C Hwang
August 2000, Journal of biomechanical engineering,
Xu Lijun, and Yeo Joon Hock, and Ned H C Hwang
October 2004, The International journal of artificial organs,
Xu Lijun, and Yeo Joon Hock, and Ned H C Hwang
March 1991, The International journal of artificial organs,
Xu Lijun, and Yeo Joon Hock, and Ned H C Hwang
October 1994, Artificial organs,
Copied contents to your clipboard!