Transient pressure signals in mechanical heart valve cavitation. 1996

Z J Wu, and J H Slonin, and N H Hwang
Department of Biomedical Engineering, University of Miami, Coral Gables, Florida 33124, USA.

The purpose of this investigation was to establish a correlation between mechanical heart valve (MHV) cavitation and transient pressure (TP) signals at MHV closure. This correlation may suggest a possible method to detect in vivo MHV cavitation. In a pulsatile mock flow loop, a study was performed to measure TP and observe cavitation bubble inception at MHV closure under simulated physiologic ventricular and aortic pressures at heart rates of 70, 90, 120, and 140 beats/min with corresponding cardiac outputs of 5.0, 6.0, 7.5, and 8.5 L/min, respectively. The experimental study included two bileaflet MHV prostheses: 1) St. Jude Medical 31 mm and 2) Carbomedics 31 mm. High fidelity piezo-electric pressure transducers were used to measure TP immediately before and after the valve leaflet/housing impact. A stroboscopic lighting imaging technique was developed to capture cavitation bubbles on the MHV inflow surfaces at selected time delays ranging from 25 microseconds to 1 ms after the leaflet/housing impact. The TP traces measured 10 mm away from the valve leaflet tip showed a large pressure reduction peak at the leaflet/housing impact, and subsequent high frequency pressure oscillations (HPOs) while the cavitation bubbles were observed. The occurrence of cavitation bubbles and HPO bursts were found to be random on a beat by beat basis. However, the amplitude of the TP reduction, the intensity of the cavitation bubble (size and number), and the intensity of HPO were found to increase with the test heart rate. A correlation between the MHV cavitation bubbles and the HPO burst was positively established. Power spectrum analysis of the TP signals further showed that the frequency of the HPO (cavitation bubble collapse pressures) ranged from 100 to 450 kHz.

UI MeSH Term Description Entries
D008943 Mitral Valve The valve between the left atrium and left ventricle of the heart. Bicuspid Valve,Bicuspid Valves,Mitral Valves,Valve, Bicuspid,Valve, Mitral,Valves, Bicuspid,Valves, Mitral
D011312 Pressure A type of stress exerted uniformly in all directions. Its measure is the force exerted per unit area. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Pressures
D002302 Cardiac Output The volume of BLOOD passing through the HEART per unit of time. It is usually expressed as liters (volume) per minute so as not to be confused with STROKE VOLUME (volume per beat). Cardiac Outputs,Output, Cardiac,Outputs, Cardiac
D006339 Heart Rate The number of times the HEART VENTRICLES contract per unit of time, usually per minute. Cardiac Rate,Chronotropism, Cardiac,Heart Rate Control,Heartbeat,Pulse Rate,Cardiac Chronotropy,Cardiac Chronotropism,Cardiac Rates,Chronotropy, Cardiac,Control, Heart Rate,Heart Rates,Heartbeats,Pulse Rates,Rate Control, Heart,Rate, Cardiac,Rate, Heart,Rate, Pulse
D006350 Heart Valve Prosthesis A device that substitutes for a heart valve. It may be composed of biological material (BIOPROSTHESIS) and/or synthetic material. Prosthesis, Heart Valve,Cardiac Valve Prosthesis,Cardiac Valve Prostheses,Heart Valve Prostheses,Prostheses, Cardiac Valve,Prostheses, Heart Valve,Prosthesis, Cardiac Valve,Valve Prostheses, Cardiac,Valve Prostheses, Heart,Valve Prosthesis, Cardiac,Valve Prosthesis, Heart
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001698 Biomedical Engineering Application of principles and practices of engineering science to biomedical research and health care. Clinical Engineering,Engineering, Clinical,Engineering, Biomedical
D014159 Transducers Any device or element which converts an input signal into an output signal of a different form. Examples include the microphone, phonographic pickup, loudspeaker, barometer, photoelectric cell, automobile horn, doorbell, and underwater sound transducer. (McGraw Hill Dictionary of Scientific and Technical Terms, 4th ed) Transducer
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

Z J Wu, and J H Slonin, and N H Hwang
March 2003, The Journal of heart valve disease,
Z J Wu, and J H Slonin, and N H Hwang
January 1998, ASAIO journal (American Society for Artificial Internal Organs : 1992),
Z J Wu, and J H Slonin, and N H Hwang
September 2004, Expert review of medical devices,
Z J Wu, and J H Slonin, and N H Hwang
January 2005, ASAIO journal (American Society for Artificial Internal Organs : 1992),
Z J Wu, and J H Slonin, and N H Hwang
January 1991, ASAIO transactions,
Z J Wu, and J H Slonin, and N H Hwang
October 2004, The International journal of artificial organs,
Z J Wu, and J H Slonin, and N H Hwang
March 1991, The International journal of artificial organs,
Z J Wu, and J H Slonin, and N H Hwang
October 1994, Artificial organs,
Z J Wu, and J H Slonin, and N H Hwang
April 1994, The Journal of heart valve disease,
Z J Wu, and J H Slonin, and N H Hwang
November 2003, The Journal of heart valve disease,
Copied contents to your clipboard!