32P-postlabeling analysis of IQ, MeIQx and PhIP adducts formed in vitro in DNA and polynucleotides and found in vivo in hepatic DNA from IQ-, MeIQx- and PhIP-treated monkeys. 1993

E G Snyderwine, and C D Davis, and K Nouso, and P P Roller, and H A Schut
Laboratory of Experimental Carcinogenesis, National Cancer Institute, Bethesda, MD.

The 32P-postlabeling method was used to examine the adducts in DNA, polynucleotides, and mononucleotides reacted in vitro with the N-hydroxy and N-acetoxy derivatives of 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), 2-amino-3, 8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) or 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). Adduct profiles were compared to those found in vivo in liver of cynomolgus monkeys fed IQ, MeIQx or PhIP. The N-acetoxy derivatives of IQ, MeIQx and PhIP (generated in situ from the corresponding N-hydroxylamine in the presence of acetic anhydride) each formed three principal adducts in DNA. Adduct 1 of IQ, MeIQx and PhIP was chromatographically identical to the 32P-labeled bis(phosphate) derivative of N-(deoxyguanosin-8-yl)-IQ, N-(deoxyguanosin-8-yl)-MeIQx, and N-(deoxyguanosin-8-yl)-PhIP respectively, and this adduct comprised approximately 65% of total adduct levels found in DNA in vitro. The C8-guanine adduct and the two minor adducts were also found in poly(dG-dC). poly(dG-dC), suggesting that the two minor adducts of IQ, MeIQx and PhIP are also formed on the guanine base. The N-acetoxy derivatives of IQ, MeIQx, and to a much lesser extent PhIP, also formed adducts with adenine-containing polynucleotides including poly(dA), poly(dA).poly(dT) and poly(dA-dT).poly(dA-dT), but these adenine adducts were chromatographically different from those found in DNA. The three guanine adducts of N-acetoxy-IQ, -MeIQx and -PhIP found in vitro in DNA and in guanine-containing polynucleotides were also found in the liver of monkeys fed IQ, MeIQx or PhIP respectively, indicating that metabolic activation via N-hydroxylation and esterification occurred in vivo in monkeys. With each compound, the C8-guanine adduct was the predominant adduct found in vivo. The results indicate similarities among IQ, MeIQx and PhIP in the DNA adducts formed in vitro and in vivo and substantiate the use of the 32P-postlabeling method for comparative adduct studies.

UI MeSH Term Description Entries
D007093 Imidazoles Compounds containing 1,3-diazole, a five membered aromatic ring containing two nitrogen atoms separated by one of the carbons. Chemically reduced ones include IMIDAZOLINES and IMIDAZOLIDINES. Distinguish from 1,2-diazole (PYRAZOLES).
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D009153 Mutagens Chemical agents that increase the rate of genetic mutation by interfering with the function of nucleic acids. A clastogen is a specific mutagen that causes breaks in chromosomes. Clastogen,Clastogens,Genotoxin,Genotoxins,Mutagen
D010761 Phosphorus Radioisotopes Unstable isotopes of phosphorus that decay or disintegrate emitting radiation. P atoms with atomic weights 28-34 except 31 are radioactive phosphorus isotopes. Radioisotopes, Phosphorus
D011119 Polynucleotides BIOPOLYMERS composed of NUCLEOTIDES covalently bonded in a chain. The most common examples are DNA and RNA chains. Polynucleotide
D011804 Quinolines
D011810 Quinoxalines Quinoxaline
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries

Related Publications

E G Snyderwine, and C D Davis, and K Nouso, and P P Roller, and H A Schut
January 1989, Chemical research in toxicology,
E G Snyderwine, and C D Davis, and K Nouso, and P P Roller, and H A Schut
January 2020, Methods in molecular biology (Clifton, N.J.),
E G Snyderwine, and C D Davis, and K Nouso, and P P Roller, and H A Schut
January 2005, Methods in molecular biology (Clifton, N.J.),
E G Snyderwine, and C D Davis, and K Nouso, and P P Roller, and H A Schut
May 2010, Environmental and molecular mutagenesis,
E G Snyderwine, and C D Davis, and K Nouso, and P P Roller, and H A Schut
February 1995, Toxicology letters,
E G Snyderwine, and C D Davis, and K Nouso, and P P Roller, and H A Schut
May 1995, Toxicology letters,
E G Snyderwine, and C D Davis, and K Nouso, and P P Roller, and H A Schut
January 1995, Toxicology letters,
E G Snyderwine, and C D Davis, and K Nouso, and P P Roller, and H A Schut
January 1996, Carcinogenesis,
E G Snyderwine, and C D Davis, and K Nouso, and P P Roller, and H A Schut
December 1987, Cancer research,
E G Snyderwine, and C D Davis, and K Nouso, and P P Roller, and H A Schut
January 1993, Chemical research in toxicology,
Copied contents to your clipboard!